
rr-e= -

‘~D—AO 52 731 CHARIJS STARK DRAPER LAB INC CAMBRID C MA F/s ~/2
JOVIAL STRUCTI*(D DESIGN DIAS*AMIO (JSOO). VC4..UPC I I I . P*O RA$—€ TC(U)
FEB 7* 5 5000ARD. M WHITWORTI4 , E STROVIMC F3fl02 76 C—0405

IMCLASSIFIED ftejSgO V OL—3 P1 1 RADC—TR 7B—9 V0tfl PT 1 NI.

in~~_ _II 1 ii flU !
U _!UUELU _ _
flfl ~ _

_

—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~

,,1~~~

• ’
’

C,
~

RADC-TR-78-9, Vol III , Part 1 (of four)
Final Technical Report
February 1978

~~~ JOVIAL STRUCTURED DESIGN DIAGRA*IER (JSDD) 
~~~~~~~~~~~~~~~ ~

Program Description . - -•

C. Goddard
M. Whitvorth
E. Strovink

The Charles Stark Draper Laboratory, Inc.

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

I

-~ . _
~~~~± _ _



- —,---- ~~~~~.---—— —,—--— -..------- ~~----,—-

Because of the size of this volume , it has been divided into four parts.
Part 1 contains pages 1/2 — 123, 649 — 657 , Part 2 contains pages 124 — 344,
Part 3 contains pages 345 — 592, Part 4 contains pages 593 — 648.

This report has been reviewed by the RADC Information Office (01) and is
releasable to the National Technical Information Service (NTIS). At NTIS it
will be releasable to the general public, including foreign nations.

RADC—TR—78—9, Vol III, Part 1 has been reviewed and is approved for
publication.

APPROVED : 

~:~~~‘~dJ~~ ‘14~ ~~~~DONALD VANALSTINE
Project Engineer

APPROVED :

WENDALL C. BAU)iAN, Colonel, USAF
Chief , Information Sciences Division

FOR THE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

JOHN P. HUSS
Acting Chief , Plans Office

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization , please
notify RADC (ISIM) Griffiss AFB NY.l3441. This will assist us in maintaining
a current mailing list.

Do not return this copy. Retain or destroy.



- —.--.

~~~~ L~~i ~~~~~~~~~~~~~~~~ 1
• UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE ($~iw, Data tnt.r. d)

DEDr
~
DT E”T~~”

DA I E READ INSTRUCTIONSr~ I~ ~Jl~~I IP~ #~.,UR~ ~~ I~~~J I’.” ‘~ BEFORE COMPLETING FORM
I. REPOR (NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER

RADC—TR— 78—9, Vol III, Part 1’(of dour)
,

• L_Zt’~
- .~~~~~ —~...-,

- -~~ .~~~~‘-u~ a ~ugD COVE4D4 JQVIAL ,~TRUCTU RED DESIGN~~~AGRANMER (JSDD), lnal Technical ~ep~~t.
Di. .~rtu~ teDS_U. 76 — Octi~~~ 7Z,

~~~~ I tA (“SC. ‘ç a~~r~ ~~~~~~ ( . ~~~. ~~ 
I I•  fl r~~ru.o. m ~~~~~~~

t~~P~~-~t .L. 
-~ —~~~~~~~ 

R-1120 ~Vc~rni., 
~~~~~~ 1________________ 

S m ~ iI~z_a~ t Sir r •i-1~
Q G./toddard~ 1

M.AJhitworth I - F3Ø6p2~ 76—C--~~~~J,E.~~ trovink j _________________________

J 1 ~ETRFORUING ORGANIZATION NAME AND ADDRESS tO . PROGRAM ELEMENT , PROJECT . TASK
AREA & WORK UNIT NUMBERS

The Charles Stark Draper Laboratory, Inc.
555 Technology Square t .E. 62702C
Cambr idge MA 02139 / r .o . 55811412
II . CONTROLLING OFFICE NAME AND ADDRESS ii
Rome Air Development Center (ISIM) eb~~ss 78
Gr iff iss AFB NY 13441 1~ . NUM BER OFi~~~ L~~~ ~~~
_______________________________ 132

_ _ _ _ _ _ _ _IA MONITORING AGENCY NAME S ADDRESS(II dill., t from Cent ltin 4 Oflic.) IS SECURITY CLAS o

Same ~~ ____‘5’ INCLASSIFIED
ISa . DECLASSIFICATION /DOWNGRADING

i/ _t~1~ 7
t/A

SCHEDULE

16. DISTRIBUTION STA ..n , a R.pori)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of th. abairact .ni.r. d in Block 20. Ii difl.r.nt from R.po,t)

Same

IS SUPPLEMENTARY NOTES

RADC Project Engineer: Donald VanAlstine (ISIM)

IS. KEY WORDS (Continua on r.v.ra. aid. II n.c....ry a,d Idanitly by block numb.r)
Structured programming Preprocessor
Structured design diagram Flowcharter
Structured extension JOVIAL J3
Parse Invocation diagram
Pa~ser generator

20. A~~~TRAC T (Conti nua on r.v.,a. aId. Ii n.c...a.y med id.n Uiy by block numb.r)

~ The report presents a detailed description of the JOVIAL Structured Design
Diagrammer program implementation for purposes of maintaining or modifying the
system .~~

DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (W~e.n Data Entarad)

_ _

_~~ P~ ±cL..~
.—-—

~~ ~~ . . . ~~
44

________________ - ,•-.———,———..

A c k n o w l e d g e i i i e n t

This report was p repared by The Charles S tar k Drape r L a i io r a to ry ,
Inc., under Contract F3UoU2 —7 6—C—O 4 U~ w i t h the ~ottie Air
L)evelopi1ient Center at O r i f f i s Air 1-orce ~3ase.

Especial c r e d i t is due Margaret Ham ilton , who p i o n eer e d
p r i n c i p l e s of S t r u c t u r e d Pr ogr am~n i n q at D r a p e r L u L o r a t o r y .
Say dean Z e l d i n ori g i n a l ly sugges ted the s y wb o l o g y i mp l e : ; i en t et i i n
t he o u t p u t of the J O V I A L S t r u c t u r e d D e s i -~n D i a q r :~- ’ ~ e r . 1~1c1I t ~5should ~j o also to iUlliai~ Daly, who created th~ St r uc t ~ir~ I i)e~~i~~r~Diagrau;i er fo r the HAL language (cur rent ly b e i n g use i on tn e ;~~A
Space Sh u t t l e p r o j e c t) . The authors •~r e i n debte I to V i c t o r
Voydocx f o r his invaluable ass is tance i n imple entii~ /3 CO~. .) l 2 te
4 U L I I C S i : ser i n t e r f a c e w h i c h was use-i s u c c e s s f u l ly b r ~~~duration ~ ! the JSDD imol ementat ion. The author’5 ar e .

~ ls
~ratet i i l to J. t;-~rton Dev ~ol ~f who se ~.ari y su~~ est ions ~Je re o~ - ;re c
dS 5 is tdn Ce L’iroll jf lollt this e f f o r t .

/
M HS ‘“ ~

- ~~_ ~o; 0
0

o,siRtBuT~I~v&;’ ~!L TY ~ ES
:w CIM.

1/2 BEST AVAII.ABIE COPY

~~~~~~~~~~~~~~~~~~



___________ — --- - -. . —~~~~~~~~ —~~~~~~ -.--— —.-____ •

PROGRAM DESCR I PT ION

This document was produced to s a t i s f y  the  r e q u i r em e n t s
of c o n t r a c t  n u m b e r  f~3O6O2—76—C—O4O8 with the Rome Air
Development Center. I t  is  one of four  companion
volumes :

* JOVIAL Structured Design I)iagrammer (JSDD )
Report Summary

fhi s docuiient is a summar y of the contents of
the  JSDD 1-inal Report.

* JOVIAL S t ru c t ired Design D iagramm er  (JSDD )
1- inal 1?eport

fhis volume presents the desi gn t echniques
for implementing the  JSDi) and describes the
use of S t r u c t u r e d  Des ign  D i a g r a m s .

* J c ) V I A L  S t r u c tu r e d  I ) es i c jn  D i n o r a r n m e r  (JS )D )
Pro gram Descr ipt ion

This volume presents a d e t a i l e d  d e s c r i p t i o n
of the program i m p l en e n t a t i o n  for purposes of
~a i n t a i n in g  and/or m o d i f y i n g  the JSL )D .

J~) V I A L  S t r u c t u r e d  De s iqn  D i a~ir aw m e r  (JSD D )
User ’s M a n u a l

I’his volume p r e s e n t s  the user ’s v i e w  of the
JSDL) a lonc  w i t h  user  opt ions  and o ther
i n f o r i i a t i o n  about  r u n n i n g  the  pro gr am .

BEST AVAilABLE cec.~
-- - • -- - --- - _~~~~~~~~~~~~~~~ - . --,--.•~~ • - . . ~~~~ -~~~ . . --- ~~ --- --~~~~. - .



—.~~~~~~~~ ‘.. ~~~ a4r ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . -~~~ — ,-~ 
--- —

~

iA i~LE ~~~ UJt~11:.-i TS

Section Page

I. Introauction 5

2. Computer Definition _____________________________________ 7

3. System iiescrirtion 8

4. Prooram Description 9

4.1 The Strin ~a cKao e 11
4.~ Phase 1 Procram Structure ____________________________ 18
4.3 Phase I ~tooule s, Variaoles , and Constants___________ 41
4.4 Data I-lies Passed to Phase � _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  64
4.5 Desion Dia~ ran Generator (L;DG) Pro~ ram Structure ,....._ 65
4.6 Phase � Moaules , Variables , and Constants _ _ _ _ _ _ _ _ _ _ _  

70

4.7 Invocation [iarirar~rner________________________________ 105
4 .~~ Conpilino the JSL)D_____________________________________ 112

~~. Error Conditions ________________________________________ 114

~.1 Error Conditions in Phase I_________________________ 114
5.~ V1)~ Error Conditions and Liehuyiino /~essaçes lit)
5.3 Error Conditions in the Strino PacKage 123

6. Uperator Instructions 123

7. Phase I Strurturea Desion and Invocation Dierjrarns~~~~~~24

b. Phase 2 Structured Design and Invocation Di~ riram s_ 345

9. Invocation Diar,ran’mer Structurea Desion and
rnvocat io r~ Lia- ’rams ____________________________________ 593

Pe rt .r e n c es  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  648

Ap pend ix A t  R e p re s~~ntirv ’  Pro c1r aT~s -~s L~.inary Trees
A ppendix b S t a t e m e n t  Unit .s , Stdternen t  io~ ens ~~fld ~~ c i r ; - i f lr s

A ppendix C’ Lptir iz inc the L>oubie ~ufierin: Sy~ te- ’

BEST AVAII.ABLE COPY

- —- -. 
--“- - . -.—--~~~~~ -



—.-——.—~ .—.. —~ - ...——.~ ---. -.- -

I. Introduction

In  r e c e n t  yea r s, the digital computer software industry has
di rected considerable effort toward the development of
desi gn and imp lementation methodologies to ensure the
suff iciency, rel iabil ity, and m a i n ta i n a b i l i t y  of s o f t w a r e
systems. The most  widely known product of this effort is
the loosely d e f i n e d  set of des ign and prog ramm i ng p r ac t i c e s
called “Structured. Programming ” (see references I , 2, and
3).

Structured Programm ing does not const itute a complete
software development methodology. Rather , it is a
c o l l e c t i o n  of general guidelines for use by software
desi gners  and implementors . As such , it provides no uniform
approach to system design and o f fers  no method of eva luating
system sufficiency with respect to requirements or design.
Despite these shortcomings , adherence to the Structured
Programming principles can be of great assistanc e in
producing sof tware  sy stems which are reliable and
i n t e l l e c t u a l l y  m a n a g e a b l e .

The t e c h n i q u e s  of S t ruc tu red  Programming  are s u f f i c i e n t l y
gene ra l  to  a l low sys tem developers  a t remendous  a m o u n t  of
s t y l i s t i c  f r e e d o m . However , the g e n e r a l i t y  of the
t e c h n i q u e s  has made the d e v e l o p m e n t  of a s tandard approach
to s o f t w a r e  a n a l y s i s  e x t r e m e l y  d i f f i c u l t .  The prototype
JOVIAL S t r u c t u r e d  Design  D iagra mm er  (JSDD ) is the f i r s t
component of an i n t e g r a t e d  s o f t w a r e  a n a l y s i s  and

• d o c u m e n t a t i o n  sys tem w h i c h  w i l l  address i t s e l f  to th i s  t a sk .

The JSDD is an a u t o m a t e d  a n a l y s i s  and d o c u m e n t a t i o n  sys tem
w h i c h  produces  two types  of d iagrams : St ruc tured  Design
Diagrams  (SODs ) and I n v o c a t i o n  Diag rams .  SDDs provide a
gr a p h i c  d i s p l a y  of p rogram cont ro l  l og ic .  I nvoca t i on
D i a g r a m s  are a d i sp l ay  of a s o f t w a r e  system ’s f u n c t i o n a l
( c a l l i n g )  s t r u c tu r e .

The JSLR) processes d i g i t al  computer  programs w r i t t e n  in
e i t h e r  J O V I A L  J3 or Extended  JOVIAL J3. Extended JOVIAL J3
is s tan da rd  JOVIAL J3 as s p e c i f i e d  in r e f e r e n c e  4 plus the
s t r u c t u r e d  e x t e n s i o n s  to J O V I A L  J3 (see JS[)[) Final R e p o r t )
w h i c h  are based upon R e f e r e n c e  5.

This  docum en t  descr ibes  the  internal structure of the JSDL)
prccj r ans , . i it h  the objective of providing enough detailed
irno lernent ation information to allow their easy modification.

BEST~AVA1LAB1E COPY 

-rn -. -



- .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . 

.
~

..- 
~~

.

. 

• .. _____ ~~~~~~~~~~~~~~L M m

An effort has been made to provide a top—down approach to
this detailed structural information; thus, it is hoped
that a high—level understanding of the JSDD can be acquired
by an u n t r a i n e d  reader  without any necessity on his/her part
to read through needless technical detail. By the same
token , the detailed information is still available (at lower
section l e v e l s)  for systen~s engineering personnel.

O



_________________ - ~~~~
- . ‘ - —

~~~ 
--

~~~~~~~~~~~~ 
- - -

~~
-
~~ 

— —-—

I
2. Computer  D e f i n i t i o n

The J O V I A L  S t ruc tu r ed  Design D i a gr ar n m e r  is des igned  to run
on a l l  H oneywel l  I n f o r m a t i o n  Systems I n c .  Series 6000
computers  p r o v i d i n g  at l eas t  one d i sk  d r ive , one l i ne
p r i n t e r , and 9ár~ of user  memory  i n  a d d i t i o n  to the memo ry or
separa te  i n pu t / o u tp u t  dev ices  r e q u i r e d  by the  GCOS o p e r a t i n g
sys tem i d e n t i fi e d  iii  Sec t ion  3.

BEST ~AVAILABLE COPY



3. System Description

The J O V I A L  S t ruc tu red  Design Diag rammer  is designed to run
under  the H o n e y w e l l  I n f o r m a t i o n  Systems Inc .  Series 60 Level
66 and Ser ies  6000 Genera l Comprehensive Operating
Suoervisor  (GCOS ) Version 1(3.

~ ~.I1T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _



~iuir i~ — — — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

4. Program Descr ipt ion

The JSW consists of three programs , organized as two
conceptual “passes. ” The first pass is referred to
( interchangeably) as the “Design Diagram Database Generator ”( L ) DiJG ) or “Phase 1 ’ . Ih e  second pass consis ts  of two
programs , one which draws Structured Design Diagrams (SJDs)
and another which draws Invocation Diaçra~is.  The f i r s t
program is refer red to ( in terchangeably)  as the “Design
Diagram Generator ” ( i) 1)G) or “Phase 2” . Ab e s~~~ nd r rogr~.i:
is always called the  “ Invocation D i a g r au m e r . ” (see Fi gure 4-i)

The f i rst  pass of tne JSDD is l a n q u a q e — d e p e n d ~ nt , because  i t
mus t e x t r a c t  f r o m  the JL] v’IAL J3 i n~ u t  pro r ;ra enouch
information to enable the SU3 and the Invocat ion U i a : j r a i i  to
be drawn. To ext rac t  t h i s  knowledge r e q u i r e s  an inti~!.ate
farni liarity wi th JOVIAL J3 — hence , the language dedendence.

However , tne d a t a b a s e  p r o d u c e d  by t h e  f i r s t  gass  is
language—independent , and c o n s i s t s  of outpt~t f i l e s  w b i c h
could just as well have  been created b y a PL/ I  database
generator. This means that both Phase 2 ~nc.i the Invocation
Di agranimer are language—indeoendent pro-gran:s.

Thus , it is clearly beneficial to separate out  t ha t  aspec t
of the JSDL) which is language dependent , so tha t the  second
pass can be applied without alteration to other databases
created by non—JOVIAL database generators.

There is another reason for a t w o — p a s s  s t ru c t u r e , h o w e v e r :
Phase 2 has an extensive list of op t ions  and f o r m a t t i n g
capabilities. If an SPO produced by Phase 2 is
unsatisfactory in some way, oftines Phase I n~ ed not he
re—run. Using the same database as before , Phase 2 is
capable of generating another entirely dissi h ilar SW if
given di fferent options. If the two—pass structure were not
presen t, Phase I would have to be re—run as w ell , wastin g
com putation resources.

Section 4 is organized as follows : Section 4.1 discusses
the e x t e n d e d  s t r i n g  p a c k a g e  deve loped  fo r  use in the J~3~)L;Sect ions  4.2—4 .3 d e s c r i b e  Phase  I ; S e c t i o n  4 . 4  d i s c u s s e s  the
Phase  1 output data files ; Sections 4.5—4.6 cover the
structure and operation of Phase 2; Section 4.7 describes
the Invocat ion Diag rammer ; and Sect ion 4 . J  c on t n i n s
instructions for compiling t h e  J 5D L) p r o gr c u s .

9

BEST - AVAILABLE COPY 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -  ~~~~~~ . ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~


—~~

-
-

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~
- - 

~~~~~~~~~~~~~~~~~~~~~ ~ . ~~~. ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~ ~~T~~~~ I1UluIuI~~

[~~~~~~~~~ IAGRA~~~~ TA
JOVIAL J3 SOURCE BASE GENERATO R (DDDG)
WIT H OR WITH OUT SCAN AND PARS E
ST RUCTUR ED EXT ENSIONS SOURCE COD E PARSE TABL ES

FILES

INVOCAT ION DESIGN DIAGRAM
DIAGRAMM ER GENERATOR (DDG)

INVOCATIO N STRUCTURED
DIAGRAMS DESIGN DIAGRAMS

Figure 4—I. Two—Pass Construction of the JSI)D

lu

S A

,
~~~~ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~— - .• -

~~
• 

~
..... .. 

4.1. The String Package

The need f or s t r ina man ipulat ion su brout ines i s acut e in
cornoiler—like programs , whos e only  pur pose is the
transformation of one series of strings Into another. l’he
string capability provided wi th JOVIAL J3 is insu fficient
for such an application. Therefore , it was necessary  to
create separate string—handling routines to provide an
elementary str ing capability.

Section 4.1.1 discusses the inadequacy of~.the JIJVIAL string
• capability, Section 4.1.2 discusses the format of “extended”

s t r i ngs, Sect ion 4 . 1 . 3  i n t roduces  the  s t r i n g  r o u t i n e s ,
Section 4.1.4 contains routine descriptions , and Section
4.1.5 lists coriipoo l and internal variables.

4.1.1 JOVIAL String Manipulation

JOVIAL J3 of f e r s  charac ter st r ing var ia b les  of stat ic
maximu m length which can he compared and assigned.
Character string literal constants can also be used. To
provide a sligntly iiore advanced capability, the built—in
function bYfE is capable of extracting a sub—string of a
character variable , given a zero—based index into the string
and a length argument.

The fu n d a m e n t a l  p rob le m w i t h  t h i s  c a p a b il i t y  is t h a t  the
~~~~~ length of a gi ven charac ter  s t r i ng  is not a v a i l a b l e .
Fo that ;n.atter , neither is the (declared) maximum length ,
~-~cept during compilation . Additionally the character
~tri ngs are Liçht—justified. This forces tedious
subtraction calculations to get at the “real” text (using
B I T E) .

A typical problem encountered with JOVIAL string s is the
Inability to assign spaces to a c h a r a c t e r s t r i n g . The
s t a t e m e n t s :

I fEh AA H 150$
AA = 7H()$

are meaningless — it is impossible to determine whether AA
contains 7 blanks , I C) b l a n k s , I blank , or 150 blanks
(leading blanks in text strings are also lost in the same
way)

In an environment where complex substrings and
conca tenat ions occur as o f t e n as ar i thmet i c ex press ions ,
this awkwardness is unacceptab le.

BEST
~

. AVAII.ABI.E COPS

~

- -

—
~~~~

-- — ____ -•—-- .~ —-- -S•- •—~~~ •- S-- -~~— —• --—- — —

4 . 1 . 2 ~x tend ed  S t r i n g  t o rmat

The solution to the string—handling problem is to encode the
length of the character string j.a~jcj.~ t he  s t r i n g  v a r i a b l e .
Then user— defined funct~ions can perform various advanced
string operations SUCh as SU~ ST~ and. CUNCAT .

It is necess ary first to define a standard m aximum length
for all character strings. This length is set to 144, based
on standard line—printer page width and divisibi lity by 6
(word alignm ent ) considerations. In order to unique ly
identify them , the charac ter  “ 1”  is p laced  i n the f i rs t  byte
o the character strings. The next five bytes contain the

- 

- l e n g t h  of the  s t r i n g .  the next 144 bytes contain the stri ng
i tsel f  — thus , each s t r i n g  is declared  w i t h  length 150. All
t e x t  is  j .~.f~~— a dj u s t~~ in the  144 bytes  of c h a r a c t er  s t r i n g .
For e x a m p l e :

JOVIAL : “ ... HELLO ”
0 149

EXTENDED STIUNG : “[OOOOSHELLO ...
0 149

4 . 1 . 3  Hout ine Descr ipt ions

rhe presence of descriptor—based character strings (strings
with a built—in length attribute ) immediately suggests a
LENGTH funct ion and a NIL character string (a string
containing nothing ). The format of the strings requires an
0U1 routine , wh i ch str ip s o ff th e unwante d descr ip tors
before outputting strings . SUBSTR (sub—string ) and CAT

• (concatenation ) routines are required by definition. A r ’IULL
function (to return I if a string is NIL ) is provided , but
is unnecessary because a character string can be initialized
to N I L , and used for compari sons. A CNVERT (convert)
routine is necessary to convert ordinary JOVIAL strings to
the descriptor form. Although the extended strings are
capable of representing varying—length blank strings , some
thought will convince the reader that creating Such strings
is a non—trivial problem. Therefore , the SPACES function is
provided , which creates descriptor—based varying—lengt h
blank stri ngs.

The following code i l l u s t r a t e s  the  use of some of the above
f u n c t i o n s:

(v a r i a b l e s  AA — DD be low a re  d e c l a r e d  as “ H I S O ” )

BEST .AVAILkBI.E COPY

- ~~~~~~~~~~~~ • ..

~~ ~•,,__~__ - - -- - - - -  - - --— -. —-•-•.----—---



— - - • • • •~~~~~~~~~~~~~~~~ .~~~~~~ a. - •

AA = f H ( ? - ~A~ i\ 1 4 ) S
3L~= IN (S ) S

DD=CAT (CAT( CAT ( S[J)3ST~ ( AA , I , 5) ,CC) ,CA T (SPACES ( I) , 1313)) ,S U b S J J ~(AA ,6 ,2 ) ) $

-J I J T ( D D ) $

The output is;

...... $I4

4 . 1. 4  S t r ing  ~ou t in e s  Summar y

• The f o l l o w i n g  sec t ions  descr ibe  the i n d i v i d u a l  f u n c t i o n s  of
the extended string pac~aqe.

4.1.4.1 CAT

CAT’ s f u n c t i o n  is to return the string defined by the result
of c o n c a t e n a t i n g  the secon d char acter str ing ar gum ent to the
first.

CAT ’s operation is straightforward , utilizing the byte
fun ct ion to mov e characters  f rom the secon d s tr ing to the
first. Errors are detected by simple addition of the
argument string descriptors (these strings are converted by
a call to C~JVEWf if they were not already converted).

CAT errors cause a truncation of the result string
(r ightmost characters lost).

4.1.4.2 UI- 1VE~ T

C~iVE RT ’ s f u n c t i o n  is to r e t u r n  the  conver ted  vers ion  of i t s
argument . If the arg um ent  s t r i n g  Is too long (>MAXCOL
characters ), it is truncated (characters are lost starting
at the ri ghtmost). If the string is already converted , it
Is pa ssed as the resul t .

CNV E 1~T searches  the  passed s t r i n g  f rom left to right until
i t  r e a cn es  a n o n — b l a n k  c h a r a c t e r .  I t  then  moves the t e x t
f r om th i s  po in t  t o the ~nd of the passed string into a
ten2orary string. L~~O more t h a n  MAXCOL characters are moved.

A descriptor is then placed in the leftmost six bytes of the
result string, which have providential ly been left blank
dun n’, the mov e above.

‘3 

BEST AVAIL4BI.E CO1?N.

S



r 
- • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

“

~~~~~~~ 

•

4. I • 4.3 LL;~(;TH

LI~NOTH conver t s  i t s  a r gu m e n t  s t r i ng  i f  n e c e s s a r y  and then
r e t u r n s  the v a l u e  of the  d e s c r i p t o r .

4.1.4.4 i’WLL

NULL simply converts its argument string (if necess~ ry) and
then returns I if the descriptor = 0.

4.1.4.5 OUT

OUT can w r i t e  s t r i n g s  to J O V I A L  f i l e  12 or to the  t e r m i n a l .
Terminal I/U is machine specific , as well as specific to the

• MULT ICS OCOS environment , and will not he described. File
12 output is written in 80—byte records. fhe inpu t string
is converted if necessary, stripped of its descriptor , and
written into two consecutive file 12 records if necessary.
File 12 is the error file for both phases of the Structured
Design diagraraner.

4. 1.4 .6  SPACES

SPACES returns a converted string containing the number of
blanks specified by its integer argument .

SPACES b lanks it s r esul t  str ing and ins er t s  a descr ipt or
equal to its integer argument. If the argum ent was less
than 0, SPACES’ result is undefined. If the argument was
greater than MAXCOL , the result strina is truncated.

4.1.4.7 SUUSTP

SUI3SflI’s function is to return the substrin:: defined by a
character string, a starting index , and a length.
Characters are numbered from left to right , starting at I.
The length is the total length of the substring , including
the beginning character pointed to by the starting index.

StJbSTi~’s task is straightforward , because the descriptor of
the conver ted  c h a r a c t e r  s t r i ng  a r g u m e n t  ( i f  the a r gum e n t  is
not conver ted , SULJ STP c a l l s  C~JV t ~k f  to conver t  i t )  a l l o w s
easy e r ror  c h e c k i n g .  The b YI E f u n c t i o n  is used to h a n d l e
the substring operation , and the passed length is
incorporated into the result string d~scriptor .

3Ui~STE ~rrors cause a null string result.

I ‘4

8ES15 AVAU.ABtI ~COPY

— - - ~~~~~~~ —--———-——~~~~~~~~ 
- - - •- --

~~~~.--- - -

~~ 1u• S_ _

~S , -~~~~_- . .- - --
~ - •

••

~

,— .- .-,
~
-‘—-.

~
“,

~~
- .-•--- — •—‘.•.

~~~
“--

4.1.5 String Package Uoinpoo l and internal Variables

corm on abcs

begin

item const i 36 s p 107374 I~3240$ “= 6h((00000)”

item const2 i 3ó s p 2i474d364805 “twice const”

item err h 150$ “not used”

item initst i 36 s p IS “if set , out opens file 12”

item Ini i 36 s$ “descriptor of overlay set I”

item ln2 i 36 s$ “descriptor of overlay set 2”

item ln3 i 36 s$ “descriptor of overlay set 3”

item 1n4 i 36 s$ “descriptor of overlay set 4”

item 1n6 i 36 s$ “descriptor of overlay set 6”

item niaxco l i 36 s p 132$ “mnaximu m size of extended
stri ngs’’

item rpte rr i 36 s p 0$ “flag directs error output”

array sal 25 h 6$ “breaks overlay set I into words”

a r r a y  sa 2 2~ h 6$ “breaks overlay set 2 into words”

array sa3 2S h 6$ “breaks overlay set 3 into words ”

item sf 1 h 150$ “parto of overlay set I”

item sf2 h 150$ “part of overlay set 2”

item sf3 h l~~O$ “part of overlay set 3”

i tem sf4 h )SO$ “part of overlay set 4”

item sf6 h 150$ “part of overlay set 6”

item tc h 150$ “tempor3ry ”

BEST AVAI tABLE - C0P1 

— - - • ~~~~~~~~~- - --



— •~~~~~~~~ .- -- — --
~~~~

-

item tc l h 150$ “temporary ”

item tcó h 6$ “temporary ”

overlay sa l=sf l= ln l $

overlay sf4 1n4$

overlay sa2=s f2=1n2$

overlay sa3=sf3=ln3$

overla y sfó=lnó $

file zzzzzz h 12000 v 80 12$

“defines error output f i l e a t t r i b u t e s”

end

proc out (aa,cc)$

item aa h 150$ “str ing whose contents is to be output”

item bb h 150S “temporary variable which holds
intermediate text”

item cc 1 36 sS “if cc is I , output to terminal

otherwise to file 12”

item dd h 80$ “temporary variable — used to write

80—byte filel 2 records ”

proc substr (aa ,f i rs t ,num)S

item aa h 150$ “host string for su bstr ing opera t ion”

item first i 36 s$ “index of first character of
substring ”

item num 1 36 s$ “length of substring ”

item substr h 150$ “r esu l t s t r i n g”

BEST A’ThlL~ E COPN 16

- - •
- - •

proc c a t (a a , bb) $

• item aa h 150$ “leftmost string In concat”

item hb h 150$ “ricihtmos t string in concat”

i t e m cat h 150$ “r e s u l t s t r in g ”

proc cnvert (aa)$

i t e m aa h 150$ “string to be converted”

item cnvert h 150$ “r e s u l t string”

item done 1 36 s$ “flag for internal while l oop”

item ii 1 36 s$ “temporary ”

i tem j j 1 36 s$ “temporary ”

proc spaces (nur~i)$

item nun i 36 s$ “num ber of s pac es in resu l t str ing”

item spaces h 150$ “result string”

proc null (aa)$

• item aa h 150$ “string to be tested for null contents-”

item null bS “boolean result — = 1 if string is null”

proc length (aa)$

item aa h 150$ “wan t to know length of this string ”

item length i 36 s$ “length of aa is contained here”

BEST AVAiLABLE COPY

~~~~~~~~~ • - -  -~~~~- - - -  - -



—--—S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~ -- — 
~~~~~~~~~ —~ - — —

4.2 Phase I Program Structure

-
- 4.2. 1 In t roduct Ion

ThIs section descrIbes the structure and operation of the
Design Diagram Database Generator (0000). InstructIons on
use of the Design Diagrammer are not appropriate here — they
will be found in the CSDL JOVIAL Structured Design
Dlagrammer User’s Manual.

Sections 4.2.1.1 gives a general overview of the DDDG.
Section 4.2.2 contains a more specific description of DDDG
structure and operation . Section 4.3.2 contains very

•

- deta i le d descr i p t ions of spec i f i c D000 funct ions and
functional modules , wh ile Section 4.3.1 gives the formats of
all ma jor internal DDDG databases.

This document is Intended to provide a heirarchical
description of the DDDG. For most purposes , Sections 4.2.1
and 4.2.2 should be sufficient for a high—level
understanding of the progr am . Section 4•3 is available ,
however , for the system s p ro gramm er who nee ds t o ma ke
additions or alterations to the DDDG.

This document shou ld be read after the JOVIAL Structured
Design Diagrammer User’s Manual and in conjunction with the
Structured Design Diagram of the DDDG (Section 7 of this
volume) .

4.2.1.1 Program Description

The Design Diagram Database Generator takes as inpu t JOVIAL
• J3 source programs of the form specified in reference 4, and

generates as out put three out put f i l e s , hencefor th r e f e r r ed
to as FILE 0, FILE I , and FILE 2. FILE 0 contains a symbo l
tabl e used by the Invocation Diagrammer. FILE 2 consists of
formatted JOVIAL program text , separated by the DDDG into
“statement un i ts ,” a f u l l list of which appears in Appendix
B. FILE I contains pointers into the FILE 2 text and
Informat ion about it. Files I and 2 are the pri mary
flowcharter databases.

The DDDG Is essentially a syntax—driven JOVIAL compiler with
abbreviated semantic analysis and code—generation phases.
Its symbol table mechanis il is also primitive , in that it
currently stores only the fact that certain procedures are
called within the scope of other procedures. The
code—generation and semantic analysis phases of the DDDG can
be thought of as that code wh ich produces the thr ee output
files.

BEST AVAILABLE CO!(

—- •— ——-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . — —-

Al though the L)DDG is an abbrev ia t ed  c o m p i l e r  In  some ways ,
- 

- it should not be i n f e r r e d  that  a f u l l — s c a l e  c o m p i l e r  could
not be b u i l t  e a s i l y  u s i n g  the DDDG as a base .  In f a c t , a
few code—gene ra t i on—or ien t ed  changes to the JOVIAL J3 BNF
description (with simi lar changes  in the code—gen era t ion
routines ) could create the bas ic  s t r u c t u r e  fo r  a f u l l  JOCIT
JOVIAL compiler.

4.2.2 St ruc ture

4.2.2. 1 Introd Uct ion

This section Is intended to present  the bas ic  D000 s t r uc tu r e
so that an understanding of DDDG opera t ion  can take  p lace .

Section 4.2.2.2 discusses syntax—dri ven compi le r  s t r u c t u r e,
and Section 4.2.2.3 shows how the DDDG f i t s  Into  this  mold .
Section 4.2.2.4 o u t l i n e s  the  f u l l  DDDG a r c h i t e c t u r e, as we l l
as summar izing its modules. Section 4.2.2.5 gives an
example—driven description of DDDG operation based on the
data in Sect ions 4 . 2 . 2 . 2 — 4 . 2 . 2 . 4 .  This sect ion rel ies
heav i ly on abstr act di ag r ams of hig h—level p rogram
s t ruc ture , primarily because such diagrams illustrate most
clearly interactions between procedures and data. In these
diag rams , a doub le l ine re presents  a p roc edur e ca l l , a
single line data f low , r e c t a n g ul a r  boxes procedures , and
ci rcles databases. This conven t ion  is fo l lowed  th roughou t
Section 4.2.2. In  the  t ex t , database names occur in  square
brackets ( 1] ) whenever their meaning s are  not obvious .

4.2.2.2 Syntax—Driven Structure

The DDDG is, as has been described in Section 4.2.1.1 , built
around a syntax—driven compiler structure. This type of
s t ruc tu re  is common in most modern com pi ler des igns and is
suff iciently flexible to accomodate all but the most arcane
or n eedlessly complex languages.

The ma jor components of a syntax—dri ven compiler are ~~~si~g
~~bies, a pars ing al gor i thm , and a synthesize routine. The
tables are constructed , usually automatically, by means of
an ana lys i s of the language descr ip t ion , which is written in
some form analogous to Backus—N aur form (BNF). These
tables conta in information about the legal sentences in the
descr i bed lan guage and gi ve ru les  for ass oc ia ti ng cert ai n
types of str ings with certain specific types of sentences.
In this way, the tab les  act as a databa s e for
“understandi ng ” sentences wr i tt en in the lan gua ge, since a
correct parse will cause source string s to be “reduced” to
more mean ingful constructs.

BEST± AVAILABLE COPY 

-- - - - -



• • 
—- - .

~ 
- 

- - 
—-5- . ———-~~~-5-• - —..—----- -,——,—~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~ 

-

~~~~

—- -

~~~

•

~~~

-

Upon such a ‘~-educ t ion , ” the s y n t h e s i z e r o u t i n e Is c a l l e d
in to dec ide what a c t i o n should he taken as a r e s u l t of the
new knowledge w h i c h has been ga ined . In uiost cas es ,
s y n t h e s i z e w i l l do very l i t t l e; however , in many cases
f u r t h e r s e m a n t i c a n a l y s i s or code g e n e r a t i o n mus t t a k e
place. The synthesis routine is generally imp lemented as a
lar ge “cas e” statement , wi th most of th e c as es e i ther e~, pty
or containing small amounts of code.

There is of course one more function that is necessarj —

that is , breaking source input text into “tokens.” A token
is an irreduceable symbol in the chosen representation of
the language . Typical tokens are reserved words i n the
language (if , proc , for) or user—supplied words
(<identifier> , <num ber>). The task of analyzing the source
in put f or such tokens is p e r f o r m ed in most s>’ntax—driven
compi l ers by the scan rout ine , which itself contains enough
wi red—in information to pick out reserved words and user—
defined variables , as well as to resolve any existin -j
inadequacies in the language as imp l emented by the parsin~rout ines. For instance , there are some language constructs
not a n a l y z a b l e by e x i s t i n g a u t om a t i c a n a l y s i s t e c h n i ques ;
but these can be dealt with by a l t e r i n g the description of
the language to side—step the difficulty , and then mass~ ging
the tokens passed froiii the scanner to “f it” th-3 ne~
description. In this way, tokens that never actually exist
in the language can be passed to the parsing routines as
“dummy ” tokens to avoid certain ambiguities.

The components described above are invoked or subsumed by a
procedure which is central to the whole compilation process.
This central procedure contains the parsing algorithm , and
uses that algorithm to call on the other units of the

• syntax—driven compiler. A typical sequence of such calls
m ight be READ (a parsing algorithm function), SCAN (get a
new token), LOOKAHEAD (another parsing algorithm function) ,
SCAN , APPLY (st ill another algorithm function), and
SYNTHESIZE (to process the new knowledge from APPLY).

Figure 4—2 shows a basic syntax—driven compiler structure.
COMPILAFI ON’LOOP contains the parsing algorithm , and calls ,
when necessary, SCAN (to pick up new tokens) and SYNTHESIZ~i(to take action after a reduction). I-~ECDVEI-~ i s a spe c i a l
proc edure used to recover from syntax e rrors. it adjusts
the parse history (stored in [parse stack]) in such a manner
as to all ow compilation to continue in a reasonable fashion.
RECO VE I-~ calls SCAN if it needs another token to make its
parse history adjustment. [TI’ahles] contains inforration
used by COMPILATIIJN’LOL)P (and PECOVE~?) to ma ke parsmn~
decisions. [Parse stack], as mentioned above , is us e r] by
COMPILAIION’LFJOP to save the parse history, and [token data)
contains information passed from SCAI~ to COMPILATION’LiOP .

BEST AVAILABLE CQP’(

—

— -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— It is not our purpose here to g ive  a comple te  d i scuss ion  of
s y n t a x— d r i v e n  c o m p i l a t i o n ; however , r e f e r e n c e s  6 throu gh ~3
give  a tho rough coverage of the  s u b j e c t .  R e f e r e n c e  6 deals
w i t h  the theory  of a u t o m at i c  g r a m m a r  a n a l y s i s , r e f e r e n c e  8
describe s the cons t ruc t i on  of a modern syntax—driven
compi ler  and r e f e r e n c e  7 gives the format of the parsing
tables  used by the  ODD O , as wel l  as the a l g o r i t h m s  by wh i ch
they were der ived .

— 

COMPILATION LOOP

RECOVER I
SOURCE SCAN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

€
~~~~~~~~~~~~~~~~

SYNTHESIZE
1

~~~~~~~~~~~~~~~
E 

-
‘

Figure 4—2. LALR (I) Compiler Structure

4.2.2.3 LAL~ (k) Extension

the L)W0’s s t r u c t u r e  var i es somew hat f rom the model
described in the last section — this is primarily due to the
structural coniplexity of the JOVIAL language.

Aithougn the description of JOVIAL used to produce the
DUDG’s p a r s i ng  tables is written in dNF , tne r esu l t i ng
grammar is not LALH (I) (resolvable with a lookahead of one
token), nor can it ue straightforwardly reduced to LAL~ (1).
This means tha t additional complexity r.~ust occur in the
parsing algorithm to handle the increased lookahead.

~ I 

BEST AVAIL4BLE COPY



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

COMPILATI ON LOOP

RECOVER

EEN
~~~~~~~~~~~

SCAN CAL

~~~~~~ ~~~~~

EcE ~1
SCAN 1 

I 
-

•

€V~~~~~~~~~~~~
F

YNTH ESIZE D
~~~~~~~

E

Figure 4-3. LALR (k) Compiler Structure

The difference in structure required by the addition of an
L A L W (k) parser is shown g r a p h i c a l l y in F i g u r e 4— 3 . N o t i c e
the a d d i t i o n of the SCAN’CALL procedure , wh ich controls the
scann er. SCAU’CALL’s primary job i s to p r o v i d e a b u f f e r
between the scanne r and the p a r s i n g a l g o r i t hm to p r e s e r v e
to kens tha t are passed over in “ lookahead ” s i t u a t i o n s .
No r m a l l y , when i t came t i m e to read such tokens , they would
have already disappeared . SCAN’CALL preserves them by
stacking them in the token stack.

BEST AVAILABLE COPY

-—•~ -.•~~~~~~~~~ -~~~~~~~~~ -- •~~

_ _ _ _ _ _ _ _ _ _ ~~~~~~~~~‘ — -~~~~~~----- - -~~~~ —5 - •-55- -5 —‘4—a. —
-

4.2.2.4 Modules Summary

This section describes the function and Interaction of the
abs t rac t modules and databases p i c t u r e d in F i g u r e ~—4 .
Al though F igure 4—4 p re sen t s an a b s t r a c t v i e w , the
abstract procedure names are identical to actual procedure
names in the DDD G, and som e data base names co r r es pond to
actual DDDG database names. This abstract view is
important , because it defines away confusing detail which
interferes with a coherent description. All descriotion of
DDDG operation will henceforth be based on Figure 4—4.

For i l l u s t ra t ive pur poses , Figure 4—4 is divided into two
are as , as shown in Figure 4—5 . Area I consists of
p rocess ing rou t ines ; that is , routines and databases which
are used in parsing and text—handling. Area II contains
output routines used to generate the DDDG databases.
Sections 4.2.2.4.1 and 4.2.2.4.2 describe the procedures and
data bases in Areas I and I I , r e s p e c t i v e l y .

4.2.2.4. I Area I — Processing Routines

COMPILAT ION’LOOP — contains the parsing algorithm.
Operates from [current token data], [parse stack],
and [parsing tables] to determine whether the
parse history as reflected in [parse stack] and
Icurrent token data] requires a reduction to a
simpler syntactic form .

DATABASES

parsing tables — contain built— 41n in format ion to
guide LALR (k) parse

current token data — conta ins a l l ass oc iat ed
informat ion about the curr ent token

parse stack — an internal stack—type database used
to s tore parse h is to ry

OPE RATI ON

Vthen COMPILATION’LOOP determines that a reduction
can be made to a s i m p l e r s y n t a c t i c f o r m , i t m a k e s
the reduction , adjusts the parse history, and
passes contro l to SYNTHESIZE . Otherwise , it ma;
s i m p l y upda te the parse history and call for
another t oken . I t can c a l l fo r a no t h e r t oken in
two ways — i t can ask f o r a lookahead or a read
token. I n both cases , i t c a l l s SCAt4 ’CALL w i t h a

3

BEST AVAII.AB~E COPY

— - ---~~~~~~ —-- - - --5

‘5- 5-5-~~~~~~~~~ ’”5-~~~ ” ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- ~~-~~~~~~~~~~~~~~ -~~-- -
~~ - --~~~-5—-5- - - - •- • - - - •-• -~~~-~~~~~~~~~~~~ --

MAIN PROGRAM
MAIN
File ~
buffer

file
~ parse

COMPILATION ’ LOOP stock
PROC
FiIe~
I-utt er —

SYNTHESIZE RECOVER— — .
- IN I TI A L I Z E

commun i- par s ing
mdt—m s catuons table,

data

— — SYNTH

SCAN’ CALL
—

— —
- data

— — - SCAN

TOG toggles

(
‘

tiie~

”

~\
info)

text card
stack

________ — — - GETCRD

last
token

BUFFER’ IN
-

formatF
decision

BUF f2’
buffer

________ F2’OUT f2 block

buffer

f i block
F1’OUT

I/O
buffer (file 1

F i gu r e 4—4 . UD~)G Structure —

~~~~~~~~~ - -  ~~~~~~~~~~~~~ - • - - -~~~~~
-•-~~~~~~~~ - -- 

~~ -~~~~~~-~~~~~~~~-



Ii - —— ~~~ 
- --

~
-— - — • --—- — •- --5 — - - —-——--—

~
—--—--—-----—-------.

~~
---— -_- --- ---:~T---— - - —•.I~~~

MAIN PROGRAM
MAIN
FiIe~bufte r

f ile 4s parse
COMPILATION’ LOOP stock

PR OC
File ~buffer -

SYNTHESIZE RECOVER ________

— 

— I INITIALIZ E
]

communi- parsing
• mdt-ms caf Onl tables

— — SYNT H

~~~~~~~~~~~~~~~~~~~ 

— — Current
— SCAN’ CALL token

- data

file

~~~~~~9b0 

— — - 

TOG toggles

~~ \ text (‘
~~

‘)
— \ = 

— - G ETCRD 
—

last ’
token

— 

BUFFER IN

FOUl -d ion

BUF f2’
butter

F2’ OUT f2 block
-
~ buffer
F 1’ OUT

ii block
I/O

buf fer file I

F i gu r e  4— 5 . I-1a r t i t i o n ed  DL)DO S t r u c t u r e

25

~

- -- ~~~~~~~~~~~~~~~~~~~~~~~~~ -- -~~~~~~~~~~~ - —-- - - - - • - • - - -~~~~~--- -



— 
‘~~~~

“ - 
~~~~~~~~~~~~~~~~ 

—
- —

fla g identifying which type of token it needs . I f
a token is received that cannot f i t In to the parse
his tory , contro l Is passed to RECOVER , wh i ch
modifies the parse. COMPILATION’LO OP is t e r m i n a t e d
by SYN TE-IES IZb when SYNTHESIZE p e r f o r m s the f i n a l
program reduction.

INITIALIZE — in i t i a l i z e s var ious constants , builds
SCAN database.

DA TABASES

scan data base — contains information about JOVIAL
source text an d common token indices.

parsing tables — see COMPILATION’LOOP

0PE RA ’r IoN

N. A.

RECOVER — acts as a syntax error recovery routine. RECOVER
attempts to continue the parse in the case of an
i l l egal token.

DATA BASES

parsing tables — see COMPILATION’LOOP

parse stack — see COMPILATION’LOOP

cur ren t token data — see COMPILATI ON’LOOP

ORE RATI ON

~ihen COMP ILATION ’LOOP cannot rea d the current
token because that token does not fit in the
current parse history, RECOVER loes one of two
thin gsz (1) it wraps the stack back to an earlier
h i s to ry and a t t e m p t s to read the token in that
env i ronmen t , or (2) i t d iscards the token as
i l l e g a l in a l l cases. RECOVE R w i l l c o n t i n u e to
r e j ec t tokens u n t i l it f i n d s a parse s t a t e which
can read the nex t token . At t h i s p o i n t , RECOVER

•

.
re turns contr o l to COMPILAT I ON ’LDO P , w h i c h
con t i nues as though n o t h i n g had happened.

SYNTHESIZE — acts upon reductions made by CO.~PILATION’LOOPto set var ious scann er f l a gs an d bas i c a l l y
In it iate out put of the fi le bu f f e r s whi ch were
packed by the outplit r ou t ines .

25


~~~~~ - - -~ _~ ~~~~~~~~~~~~~ _5•_•5•••_~_ •
- ‘

~‘‘  .~~~~. ~• _  ~~~~~~~~ -__~~~ — •——_-—_ -_••~~~~~—•_

DATABASES

• proc FILE 0 buffer — see 4.2.2.4.2 , SYNTHESIZE.

main FILE 0 buffer — see 4.2.2.4.2, SYNTHESJZE.

current token data — see COMPILATION’LOO P

communicat ions data — data passed from external
procedure SYNTH which is essentially a part of
SYNTHESIZE.

MDT—MS — macro stack and macro definition table

FILE I info — information about type of next FILE
I recor d

FILE 0 — symbol table output file

exception — scanner exception flags

OPE PA T I ON

SYNTHESIZE recognizes certain types of key
re duct ions , reduct ions to forms which it ca l l s
statement units. Each statement unit corresponds
to a class of boxes in the flowchart output.
Reduction to certain statement units causes
SYNTHESIZE to cal l  var ious  f i l e  ou tpu t  routines.
These reductions are processed by the SYNTH
rout ine , wh ich SYNTHESIZE calls when necessary.
The most i m p o r t a n t  Area I funct ion per fo rme d by
SYNTHESIZE is the setting of certain scanner flags
and the re la te d al ter ing of the  MDT. The s canne r
flags wi ll be discussed in Section 4.3.2; however ,
the alteration of the MDI’ is an importan~
high—level function. When a reduction is made
that s ignals the rea di ng of a new DE F INE
directive , SYNTHESIZE searches the MDT for a name
to match the DEFINE name. If it finds one, it
uses that entry In the MDT as the new entry of the
new def inition . If it does not find one ,
SYNTHESIZE creates a new entry in the MDT and
initializes it. In this way, SYN THESIZE en ab l es
the the re—using of the DEFINE directive name as
allowed in the JOCIT manual.

C l e a r l y ,  SYNTHESIZE cannot fill in the macro entry
Ir, the MS. However, new space i s a lways  a l locat ed
in the MS for a new name , r egar d l ess  u f wheth er
that name has been defined before ~c ince the
de f i n it ion coul d now be longer than the l ast
previous definition ). SCAN’CALL eventually fills

2 1

- - -5—-——- - —— -5~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~ - -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

in the rest of the macro derinitlon , arter an
appropriate scanner exception flag is set in a
di fferent SYNTHESIZE reduction case.

SCAN’CALL — primary function is maintenance of
LALR (k) lookahead token s.tack. Serves also as
comment processor , macro definition processor ,
and as out put format ter , as we l l as caus ing the
output of all comments.

DATABASES

cu rrent token data — see COMPILATI ON’LOOP

token stack — sta ck wh ich conta ins prev ious
lookahea d tokens so that they can eventually be
read by the parsing algorithm

MDT—MS — see SYNTHESIZE

exce pt ion — see SYNTHESIZE

OPERATION

If SCAN’CALL i s ca l led for a l ookahead to ken, it
calls SCAN for the next token only if it has
looked at all the tokens in (token stack]. If the
new token , or the token in token s tack is part of
a comment , i t Is save d, but ignored. If it is a
macro name , it is saved and ignored , and SCAN is
called again to expand the name. No output of
i n fo rmat ion or p rocess ing of to gg le comments or
outputting of text can take place in lookahead
s i tuat ions , because the act ion would he tem por a l l y

• incorrect. The token may not actually be read
unt i l far in the fu tu re , and it woul d not do to
have comments appearing where they did not occur ,
or toggles changing before the comment toggle.

Ithen SCAN’CALL is calle d for a read token , it
checks its [token stack] for available read
tokens. If none exists , it calls SCAN. If the
next token is the beginning of a comment ,
SCAN’CALL sets a special case flag for SCAN , and
then c o l l e c t s the resu l tant tokens into a f u l l
comment and out puts i t , wi th informat ion on what
type of comment it is (inline , stand—alone , etc.),
to the output files . If the token is the
beginning of a macro definition , SCAN’CALL fills
in the appropriate entries In the MS with the text
associated with the new macro name. Formatting
decisions are made on whether to expand macros or
not. Most formatting decisions are made in the

2d

-—5--- - - - - - - -~~~~~~~~~~~~ -- - •-~~~~~~- - -—------ - ---- - -

— — •
~ -~

--~~~~~ --
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —5’ — ~~ -- —-~---~~~~~~~~~ • -

—-~~~~~—

bu f f e r  rout ines , however. Pre—defined macros are
ex panded as described above.

SCAN’CALL has a unique position in the structure
of the DDDO — it i s  the only routine which has the
power to alter scanner output or interpret it
directly. Thus, SCAN’CALL is assigned various
low—level tasks such as comment recognition and
macro def inition fill—in because to do these tasks
elsewhere mas k s what is really happening — n a m e ly ,

a master—slave relationshi p between SCAN’CALL and
SCAN.

• TOO — decodes comment toggles.

DATABASES

current token data — see COMPILATION’LOOP

toggles — database listing all known toggle
configurations

OPERATI ON

when called by SCAN’CALL , TOG checks the current
line (which must be a comment of some kind ) for
occurrences of f - cq>ctoggle>), where <toggle>
belongs to the set of recognizable toggles in
(to ggles]. Some of the legal toggles include
ASIS , DEBUG, and EXPAND. The presence of or lack
of <q> , where <q> represents the character 1IF ~~~,
Indicates the desire to either turn off or turn on
the toggle.

SCAN — decodes current line and returns next legal token ,
along with various related information.

DATABASES

current token data — see SCAN’CALL

text — the current line of text , as presente d by
GE TCRD

scan database — contains information about JOVIAL
source text and common token Indices.

_ _  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --- - • -~~~ -~~~~- ~-



— 
- 

— ~~~~~~~-----—-- ~~~ ~~‘~~~~~~‘r - - 
:~~~

—“— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~—~~__-~~- - -  ~.-— ----~~-— - - • •

~— - -— - — — —----

exce ption — see SYNTHESIZE

-

-

OPERATiON

The scanner operates In two modes — special , and
regular. Regular mode means that the scanner uses
its databases to branch to an app ro pr iate rou t i ne
based on the first char3cter of the next token.
It then , in thes e spec ia l cases , dec odes the token
fur ther and p laces i t and i ts assoc iate d
information into [current token data]. The
associated information includes the number of
blanks prece di ng the token , the token’s actual
character appearance , whether the token is a macro
name or part of a macro expansion (DErINE
directive expansion), an d wheth er a
ca rriage—return line—feed immediately precedes the
token. This extraneous information is needed to
enable the EXPAND and ASIS options .

In spec ia l mode, the scanner is doing something
unusual because of the unusual JOVIAL construction
it is processing . Usually, th i s involv es
return ing a string of characters (as in a comment
or define directive) rather than dividing the line
up into real tokens. At other times special mode
can involve returning specially designated tokens
because of the scanner ’s inability to
d i f f e ren t iate betw een s t r u c t u r a l l y s im i l ar
constructs. This special mode is enabled by
flag—setting in the SYNTHESiZE and SYNTHESIZE
rout ines , s i nce only the pars i ng al gor ithm kn ows
what construct is cu r ren t l y bein g p rocess ed , and
it must decide that a special scanner mode is
n eeded .

GETCRD — places the next input card into [text).

DATABASES

t e x t — see SCAN

source input — input to flowcharter

MDT—MS — see SYNTHESIZE

Jo

4

-~-- ~~~~ -- ____________________ ——-- - - - - ---5 -
~
—-- - r - -

card stack — used to stack cards holding multip le
card macro definitions , or mult iply nested macro
d e f i n i t ions

OPERATION

In most cases , GETCRD behaves as one might expect
— namely, reading in the next card from the source
file and plac ing it In [text]. I~hen a macro name
has just been rea d by SCAN , however , OETCRD pu l l s
the def inition of the macro from MS, and l oads it
into [car d stack]. On succeeding calls to GETCRD,
the routine reads from (card stack] until it is

• em pty. A nested macro call thus requires no
special GETCRD mechanism — its definition , too , is
loaded on top of the already occupied [card
stack]. Obviously, recurs ive macro c a l l s w i l l
even tua l l y ov er f l o w the car d stack , which is
po in te d out to the user w i th an app ro pr i a t e
overflow message.

4.2.2.4.2 Area II — Output Routines

SYNTHES IZE — sets f l a gs wh ich tr igger out pu t ; per fo rms a ll
FI LE 0 ou tpu t .

DATABASES

proc FILE 0 b u f f e r — conta ins names of a ll
procedures and funct ions ca l l e d w i thin sco pe of
current proc .

ma in FILE 0 buffer — contains names of all
procedures and functions called within main
procedure proper.

(for other data items used , see 4.2.2.4.1 ,
SYNTHESIZE)

OPERATION

Ithen SYNTHESI ZE detects the occurrence of a
statement un it reduct ion, i t c a l l s FOU T, wh i ch
outputs the appropriate data to files I and 2.
(FILE I info] tells FOUT what type of FILE I
record to build. In the case of certain “dummy”
FILE I entr ies (end of scope), SYNTHESI ZE calls
FILE 1’OUT directly.

Hhen a procedure or function call is de tected in
SYNTHESIZE , the current scope is checked. If the

il

- - - — - - -5----- -

parse is w i thin an in ternal p roce dure , the new
proc or function name is checked against the
contents of (proc FILE 0 buffer). Otherwise , it
is checked against (main FILE 0 buffer].

Ythen a pro c scope t e r m i n a t e s , [proc FILE 0 buffer)
is dumped out to FILE 0. When a new proc scope is
entere d, the name of the p roc i s entered int o
[pro c FILE 0 buffer] and the old contents of the
buffer are flushed. [Main FILE 0 bu ffer] is
dumped at the end of the parse.

If it overflows , [proc FILE 0 buffer] can be
dumped , and a new buffer is then built. An
overflow of (ma in FILE 0 buffer) causes a
non—fatal error message and another message which
eventually appears on the Invocation Diagram
produced by the DOG.

BU FFER-’IN — makes formatting decisions for the next
FILE 2 record.

DATABASES

last’token — number of last token entered into
f2’buffer

format data — dec is ion ta bles for forma tt ing of
FILE 2 out put

current token data — see 4.2.2.4.1,
COMP ILAI’ION’LUOP

format decision — variables set by BUFFER’IN which
commun icate forma tt ing decisions to BUF.

OPERATION

BUFFER’IN simply queries [format data], wh i ch
conta ins enou gh informat ion to enab l e the format
decisions for the next FILE 2 entry.

BUF — adds to [f2’buffer] the formatted character
representation of the current token.

DATA BASES

format decision — see BUFFEU’IN

curren t token data — see 4.2.2.4.1 ,
COMP ILAT ION’LOOP

3’

f2’buffer — holds the character representation of
the cu r r en t s t a te m e n t u n i t

OPERAT ION

BUF appends to [f2’buffer] a formatted version of
the current token’s character representation . Its
pr imary funct ion i s addi ng or del et i ng spaces f rom
before or after the token. BIJ F also keeps a byte
and line count of the contents of [f2’buffer].
For illustrative purposes , th is informat ion is
assumed to he part of (f2’buffer].

F2’OUT — writes out one FILE 2 record.

DATABASES

FILE I info — see 4.2.2.4.1 , SYNTHESIZE

f2’buffer — see BUF

FILE 2

f2’block I/O buffer — bu ffer used to block FILE 2
recor ds together

OPERATION

F2’OUT writes the contents of [f2’buffer] out to
[f2’block I/O buffer]. It also copies the byte
count and line information from [f2’bu ffer] into
[FILE 1 info].

If (f2’bIock I/O buffer] fills up, the bu f fe r Is
output as a FILE 2 record. The buffer is always
output at the end of the D000, to a ccount for
pa r t i a l f i l l i n g fo l lowe d by 0000 te rmina t ion

F2’OUT always flushes f2’buffer.

FI’OUT — writes out one FILE I record.

DATABASES

FILE I info — see 4.2.2.4.1, SYNTHESIZE

fI’block I/O buffer — buffer used to block FILE 1
recor ds toget her

- —— — -~~-~ --~~~~~~~~ ‘ —~-~ - —~ -~~- ~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---5 ~~-—~ - - — — — - - - -

FILE I

OPERATION

From informat ion in [FILE I info], F I ’ iJUT puts one
FILE I record out to (fl’ block I/O bu ffer]. See
F2’OUT for a description of how this buffer is
used.

4.2.2.5 Operat ion

Hav ing descr ibed the pur poses of the modul es and databases
pictured In Figure 4—4, it rema ins to be shown how the
system works as a whole. The most stra ightforward way of
accomplishing this is to trace the execution of a test
example using the descriptions In Section 4.2.2.4.

The test exam ple chosen (see Figure 4—6) shows D000
formatt ing capability, syntax error recovery , the ASIS
option , FILE 0 construct ion , macro expansion , toggle
processing , and comment handling , as well as the usual FILE
I and FILE 2 construction. An IFEITH construct is included
for statement unit variety and END’SCOPE illustration
purposes. Note that this program wi ll ~~~ com pi le
succ essfully. —

Execution of the 0000 beg ins w i th iNiTiALIZE , which builds
the scanne r database and presets certain internal variables.
Then control is passed to COMPILATION’LOOP (C-’LOOP), wh i ch
will direct the DDDG for the remainder of its execution.

C’LOOP calls SCAN’CALL for a read token In the input text.
SCAN’CALL calls SCAN , which calls GETCRD. GETCRD returns a
line of text (START S), and SCAN ident i f ies the f irs t token
in the l i ne as “START”. SCAN’CALL then calls BLJ FFER’IN ,
BUFFER’IN calls BUF with its formatting decision , and BUF
puts out “START “ to tf2’buffer]. SCAN’CALL returns , and
COMPILA TION’LOOP interrogates [parsing tables] and [current
token data] to determine a proper parsing state transition.
No reduction Is made , so C’LOOP calls SCAN’CALL for another
token. “S” is returned in the same fashion as “START” , and
C’LDOP performs a reduction of “START $“ to <PROGRAM HEAD> .

C’LOOP then calls SYNTHESIZE , which fills (FILE I info] with
statement unit num ber 39, ind icat ing the reco gn i t ion of a
<program head> . SYNTHESIZE calls FOUT, which calls F2’OUT.
F2’OUT wri tes the byte and line count of (f2’buffer] to
(FILE I info], mov es 1f2’buffer] to (f2’block I/O buffer),
and clears (f2’bu ffer]. F2’OUT returns , and FOUT calls
FI’OUT , which outputs an (fI’block I/O bu ffer] record based
on information in [FILE I info]. Contro l returns to U’LOOP.

34

I

- - - -

r ~~
- — — - —--- --

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - 

~
.---—-

~~
—- --—- - —--- - - - -- • —-- --

~~ 
—-—- —-- -

— -5 -—- -- - ---

2 startS
3 ‘-‘ (expand ) “
4 “(debug ] “

5 def ine  integer “1 36

7 item aa integer $

9 “thi s next  s tmt  w i l l  cause a parse error-”
10 “[-‘debug]-”

12 aa=ifeith bbS
13 aa=35
14 ifeith aa eq 3$ begin

bb=~ $
16 -‘-‘ (debug]”
17 printS
1 8 end

22 “[‘debug]”

24 or i f I S begin
25 aa=I$
26 end

28 end “of Ifeith”
29 “now, let’s turn on asis [as is)-”

31 pri ntS

33 proc prints begin

35 print’it $
36 end
37 ‘-‘ [ ‘ asis) “

38 term S

1-inure 4—6. Examp le JOVIAL J3 Program

35

- -5  - • -  -—-5- - - - - -- - ---- ~~~~~— -- —-5 -- - ---—- ----—- -



-5— — -5 — — —  —— 5--—

C’LOOP calls SCAN’CALL for a read token , SCAN’CALL calls
SCAN , SCAN ca l l s  GET CRD , and re tu rns  the token “ . But
SCAN’CALL knows that it is not processing a DEFINE
d i rect ive , so it must have a comment. It knows the comment
belongs on i ts own l ine , also , because the CRLF flag was set
by GETCRD. SCAN’CALL calls TOG to p-rocess the comment for
toggles. TOG finds -“ [EXPAND]” , and sets the EXPAND toggle
flag. SCAN’CALL then acts as SYNTHESIZE did , on th e
previous reduction — namely, wri t ing a “38” into (FILE 1
info], and calling FOUT. SCAN ’CALL then loops for a real
token , and the same act ivity occurs with the new card , “

(DEBUG ) -“ .

Finally SCAN returns a real token , “DEFINE” . The parse can
be picked up at this point in Figure 4—7 (thanks to the
(DEBUG ] toggle). Nothing that has not already been
described occurs until reduction 17 is performed.
SYNTHESIZE enters  the DEFINE name into the (MS ], and the
define and scanner exception flags are set. SCAN’CALL is
called for the next token , and calls SCAN . SCAN returns
“<charac te r s> ” , because of the excep t ion  f l a g .
Interrogating the define flag , SCAN’CALL places the —

charac ter  r ep re sen ta t ion  of <cha rac t e r s>  i n to  the [ MDT ] and
updates the (MS ] en t ry  of the cur ren t  macro . The nex t  token
re turned is “, so the f l a g s  are turned of f  and the parse
continues.

Operation continues normally, unt i l  SCAN encounters the
string “integer ” in the next card. SCAN correctly
iden t i f i es  “integer ” as an id ent i f ier , but be fore passing
<identifier> to SCAN’CALL, it searches the [MS] for
“integer ”. It finds it , and calls GETCRD with a flag set.
GETCAD copies the definition of “integer ” from the [MDT] to
[car d stack ), af ter  stack ing what rema ins of th e curr ent
card (“5”). GETCRD then returns the macro definition as the
current text string. Before the call to GETCRD, however , a
return was made to SCAN’CALL. During this return
processing , SCAN’CALL interrogated the EXPAND toggle flag,
decided to expand the macro , di scar ded the macro name , and
re—invoked SCAN. SCAN had previously signalled itself that
it needed a new card by moving its current card pointer past
the text limit on the card , wh i ch is why i t  ca l l ed  OETCRD.

when GETCRD returns the macro definition as the  cur ren t
car d , the tokens on the card are passed back to SCAN’CALL in
the usual fashion by SCAN , exce pt that the tokens are

-
- f lagge d as part of a macro d e f i n i t i o n . I n t e r r o g a t i n g  the

EXPAND togg le , SCAN’CALL writes these tokens out to
( f 2 ’b u f f e r] .  ~iihen GETCRL) is c a l l e d  for  ano the r  card ( t h e
macro d e f i n i t i o n  hav ing  been e x h a u s t e d) , it re turns  what is
l e f t  of the o r i g i n a l  card ( “ 5 ” ) .  The parse  then c o n t i n u e s
normally .

36

_ _  _ _ _ _ _ _ _ _  - - - -~~~~~---- - --5 

j



________________________ - 
- ~~- - ~~~~~~--~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

READ TOKEN RETURNED : DEFINE
READ TOKEN RETURNED: <IDENTIFIER>
#16 <DEFINE HEAD> 8= DEFINE <IDENTIFIER>
READ TOKEN RETURNED ’ ‘-‘

#17 <~~~~> 8 8 = ~~
READ 1DKEN RETURNED: <CHARACTERS>
#18 <TEXT> :s= <CHARACTERS>
READ TOKEN RETURNED: “
READ TOKEN RETURNED : S
#15 <DEFINE DIRECTIVE> : 8= <DEFINE HEAD> <-“ > <TEXT>
-‘, $
#1 3 <DI RECTIVE> : 8= <DEFINE DIRECTIVE>
#12 <ELEMENT> ::= <DI RECTI VE>
#8 <ELEMENT LIST> : 8= <ELEMENT>
READ TOKEN RETURNED: ITEM
READ TOKEN RETURNED ’ <IDENTIFIER>
READ TOKEN RETURNED : I
READ TOKEN RETURNED : <NUMBER>
READ TOKEN RETURNED: S
#212 <SIGNING> 8 8 = S
#209 <INT HEAD> : := I <NUMBER> <SIGNING>
LOOKAHEAD TOKEN RETURNED : $
#205 <INTEGER DESCRIPTION> ::= <INT HEAD>
199 <ITEM DESCRIPTION> : 8= <INTEGER DESCRIPTION>
READ TOKEN RETURNED : 5
#196 <SIMPLE ITEM DECLARATION> ::= ITEM <IDENTIFIER>
<ITEM DESCRIPTION> $ -

#178 <DATA DECLARATION> ::= <SIMPLE ITEM DECLARATION>
#30 <DECLARATION> ::= <DATA DECLARATION>
#11 <ELEMENT> ::= <DECLARATION>
#9 <ELEMENT LIST> ::= <ELEMENT LIST> <ELEMENT>

point
ILLEGAL SYMBOL PAIR: = IFEITH
PARTIAL PARSE TO THIS POINT IS: <PROGRAM HEAD>
<ELEMENT LIST> <VARIABLE> =

SKIPPED OVER TOKEN “IFEITH”
RESUMING

— —————— point2
READ TOKEN RETURNED : <IDENTIFIER>
LOOKAHEAD TOKEN RETURNED: $
#169 <PROC NAME > ::= < I D E N T I F I E R >
READ TOKEN RETURNED : $
#167 <PROCEDURE CALL> ::= <PROC NAME> S
#141 <SIMPLE STATEMENT> ::= <PROCEDURE CALL>
#22 <STATEMENT> : := <SIMPLE STATEMENT>
#10 <ELEMENT> ::= <STATEMENT>
#9 <ELEMENT LIST> $ 8 = <ELEMENT LIST> <ELEMENT>
READ TOKEN RETURNED : END
#397 <END> ::= END
#77 <COMPOUND STATEMENT> : := <BEGIN> <ELEMENT LIST>
<END>
#89 <THEN CLAUSE> 8 8 = <COMPOUND STATEMENT>

l-i (~ur e 4—7. Partial Parse of Exampl e Pronrar’i

37

- - ~~~~~~~~~~~~~~~ .~~ w— —

Little of note occurs (except for the (DEBUG] toggle being
turned off at card 10) until the presence of a parse error
in card 12. The output between points I and 2 in Figure
-4—~ shows RECOVER’s response to the illegal IFEITH token.
It could not wrap the state stack back to a point where
IFEITH was a legal state transition symbol , so it rejected
the token.

Card 17 is a procedure call — SYNTHESIZE detects this , and
enters the name “print ” into [MAINP FILE 0 buffer]. Card IS
causes a var iation from the usual output of both a FILE 1
and FILE 2 recor d — a f te r the or dinary ca l l to FOUT ,
SYNTHESIZE makes an additional call to F1’OUT , which causes
a dummy FILE I record to be produced , called an END’SCOPE
(identified in Figure 4.2—7 by a STMT’TOKEN type of “I”).
END’SCOPEs are used by the DOG to map out the flowchart
intell igently.

Card 29 turns on the [ASIS] toggle — notice the effect on
files I and 2 (Figure 4—b) . Parsing continues , but output
is totally controlled by the CRLF flag. FILE 1 records
which are ASIS are identified by “37”, and are printed in
one contiguous box by the DOG. Leading spaces are preserved
in the FILE 2 text by using the BLANKS information in
(current token data) to concatenate the appropriate spaces.

Card 33 causes the initialization of [proc FILE 0 buffer] by
SYNTHESIZE , SYNTHESIZE havin g recognized a reduction to
<procedure call>. SYNTHESIZE also sets the scope to I ,
wh ich means th at p roc and func ti on cal ls f o l l ow i ng w i l l be
recorded in [pro c FILE 0 buffer] instead of tnainp I-ILL 0
buffer]. Thus, card 3 ’s procedure name is entered into
(proc FILE 0 bu ffer]. Card 36 causes SY~1THE SIZ E to
recognize a reduction to <procedure declaration > , which
resets the scope to 0. Figure 4—s’ shows the final FILL 0
output.

At terminat ion , all temporary I/O buffer~ are written out.
Not ice car d 37 , which turns off the [PSIS] toggle. It is
necessary to f ol l ow the User ’s Manua l r u l e s about the
occurrenc e of (ASIS] and (‘ASIS] , since improper usage will
cause the DOG to miss vital END’SCOPE information , and w i l l
result in no flowchart being produced.

3h

-- - --- -5-- - — - - - --- - - - - - --- - -——- - - — -5 - - - - -

‘

~

~F~
-—

~~~~~ ~~~
==

~~~~~~~~~~~~

FILE I:

INDEX TOKEN RECS LNGTH
O 39 I 8
1 38 1 15
2 38 I 15
3 9 1 43
4 25 I 17
5 38 I 44
6 38 I 13
7 lB I 17
8 18 1 9
9 49 I 7
10 48 I 10
II 4 I 6
12 18 I 9
13 38 1 22
14 22 I 8
15 5 1 4
IS I 1 4
16 38 I 13
17 46 1 9
18 4 I 6
19 18 I 9
20 5 I 4
20 1 I 4
21 5 I 4
21 1 1 4
22 3 1 14
23 37 I 35
24 37 I 6
25 37 I 1 7
26 37 I 54
27 37 1 3
28 38 lB
29 8 I 7
29 1 1 7

I-inure 4—b . FILE 1 and FILE of Example Program

3~i

-5 - - -.- -~~~~—-5~~~~ —-~~~~~~~~ - - — --
~~~~~~~~~ --~~~~~ - - — — - - - —~~~~~~~~~~~~~~~~~ - —- --~~~~~~-- -- - - --



- -—

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 

FI LE 2:

O START S
I “ (EXPAND] “
2 “[DEBUG) “

3 DEFINE INTEGER “1 36 S” $
4 ITEM AA I 36 ~
5 “THIS NEXT STMT NI LL CAUSE A PARSE ERROR”
6 “[‘DEBUG)-”
7 AA = II-EITH 88 $
8 A A = 3 $
9 IFE I TH
10 AA EQ 3 $
I I BEGIN
12 88 = I S

13 “ [DEBUG]”
14 PRINT $
15 END
16 “(‘DEBUG]-”
17 ORIF I $
18 bEGIN
19 AA - I $
20 END
21 END
22 “OF IFEITH”
23 “ NO M , LET’S TURN ON ASIS [ASIS]”
24 ~RINT$
25 PROC PRINTS BEGIN
26 PRINT’IT $
27 END
28 “ (‘ASIS]
29 TERM S

-
- I -iç u re 4—b . FILE I and FILE 2 of Example Prooran (cont.

FILE 08

PRINT — procedure name
PRINT’IT — nam e of procedure called

***MAIN — ma in pro gram
PRINT —— name of proc called

I-i~ ur e 4—v . FILE U of Example Procira rn

40

L~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

__
~_ —_---_- - ----—- — —-5 -——-5 - — — ——-5— - - - — — - —-—-—— ——-— -—-- ----

. — —--
,

-
— - - ---- — --5—- -- — - - -~~ — -- —y-- -

-

4.3 Phase I Modules , Var iab les , and Constants

This section contains data Items and lower level procedure
descriptions . It is broken up as follows’ Section 4.3.1
covers variables and data structures; Section 4.3.2
conta ins procedure descriptions ; and Section 4.3.3 contains
local declarations.

4.3.1 Phase I Variables and Data Structures

Sect ion 4.2.2.4 gives an abstract view of the functions of
various data within the DDDG. This section explicitly lists
data i tems by name , as they are used in the program. It
w i l l be di f f i c u l t fo r the reader to draw p a r a l l e l s be tween
this list and the abstractions In Section 4.2.2.4 —— this
l i st is inten ded only as a r e f e rence f or qu i ck looku p of
var iable names. The listing of the phase I data coinpool is
organized in the same way as the abstraction in 4.2.2.4 —

thus , parallels between the two are easily drawn.

This section is divided as follows ’ Section 4.3.1.1
contains DEFINE directives ; Section 4.3.1.2 contains table
declarations ; Section 4.3.1.3 contains file declarations ;
Section 4.3.1.4 contains globa l variable declarations ; and
Section 4.3.1.5 contains declarations for the parsing
tables.

4.3.1.1 Phase I DEFINE Directives

de f ine as is’stmt “37-”s
def ine as i s “O”$

def ine character “h ISO” $

define debug -“2”S

define expand “I”$

define fl’blocksize “78”$

define fO’blksize “60”$

define f2’blocksize “I2”S

define false -“0” S

define integer -“1 36 s” $

41

_ -- ~~~~~~~~~~~~~~ - ---~~~~~~ -5 — -5--- -~~~~~- - - - -- -5 - - - - - - -~~~- - - - —- -5- _ _-----

~~~~~

- - - - - - 5 - - - - - -



— —~-- — ‘
-
~~~~~~
.
~——~~

—
~
-

~~~~~— —~~~ ~~~~
— ——-----

~~~~~~-- -

def ine macro “IOOO”$

define max-’msp “25”$

define max’sym buf “lOOO”$

define inax’mtbl “5O”$

define wax “5O’’$ “token stack size ”

— define max ’f2 “50”$

define max’mainp “IUOO”$

define max’mdt “IOU”$

define true “I” $

define type3 “37”$

define typel -“3”$

define type2 “2”$

4.3.1.2 lable Declarations (Output Record Formats)

tabl e f i l e 2 b r f 2 ’h l o c k s i ze s n $ “ f i x e d lngth , s e r i a l ,
nopacking ” “ each entry in this table is a file2 record ”
begin
item f2’entry h 150$
end

tabl e file lb r fI’blocksize s n$ “each entry in this table
is a file l record”
beg in
item file2’index i 36 s$ “index into file2 ”
item stmt’token 1 36 5$ “st~it type ”
item f2’recs i 36 s$ “no of f i le2 records ’’
item stmt’lnqth I 3~ s$ ‘‘total no of bytes”
end

table fileUb r fO’blksizo s n $ heuin “each o ut ~~t i t 01 LfliS
table is a tileU record”
item fU’entry h 30~ en~


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~—~~~ 

— -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
- —

~~ — — — - - — - — —

4.3.1.3 t-ile Declarations

tile source h 12000 V bO v (a) v (b) v (c) v (d) v (eof) II $
“file -declaration of source file ”

file -~uah h 12000 V l I b 12$ “used for error output file ”

file fUel b 1 0000 r 313 13$

file file2 o 1 0000 r 301 14$

file tii eU b 1 0000 r 301 15$

“these are the declarations for the three phase l output
tiles ’’

4.3.1.4 U lo ba l Var iables and Data St r uc tu res

item blanks integer p OS “conta ins the number of blanks
before the current token (counting from the last token , or
~rorn the beg i nning of the current card)”

item buf’lines integer p 1$ “num ber of l ines in cur ren t
statement unit”

i tem hcd character $ “charac ter represent at ion o f cu r r en t
to ken”

item buffer h 80 $ “used to input one dO—column source
card”

item comment i 3O s p 05 “contains the type of the current
comment — i.e., whetner it is within the scope of the
preceding stint , on the sat-i c line as the preceding statement ,
or on it s own l ine “

Item coinment’fl ag integer p 0$ “used to strip spaces from
in front of poorly constructed co~iinient lines ”

item crlf integer p 0$ “if c r l f is I , a carrin~ e—return
line—fee d has occurred before the current toi~en ”

item ch~ r’courtt integer p 04 ‘‘n’ii ibt~r of characters in
current statem ent. ti ni t “

iteir~ card’count inte’:~er $ “number of cards read”

Itei.i cp inteLjer p I $ “p~ irits at next available ch~ racter
in text’’

- - ----5- - - - -5~~~~~--~~~~~~~- --- - - -~~~~~~ --- - - - - - -

- c - - ~~ - -~~~
------- -~~~~~~~~ — - - —~~~ ———- - —-—-- — —- - -

item compiling b$ “switc h to turn compilation on and off”

item context integer p 0$ “identifies whether parse is
within a procedure definition or in the main program ”

item characters integer $ “Index of <characters> in VOCAb~~

array calicount S integer $ begin 0 end “used to analyze
contro l flow in phase I”

i t em d e f i n e ’f lag in t ege r p 0$ “flags the fact that a DEFI~JE
directive is being processed ”

S item digit integer p 8 $ “identifies digits in array TYPE”

item dollar integer $ “index of $ in VOCAB”

item dot integer $ “index of • in VOCAB”

item ddone b$ “bi nary flag for while loops”

item ddcount integer p 0$ “util i ty var iab le-”

item divide integer $ “index of / in VOCAI3”

item ellipsis integer S “index of ... in VOCAb ”

item equal integer $ ‘‘index of = in VUUAt3 ”

item exchng integer $ “index of in VOCAB ”

item eofile integer S “index of end—of—file in VOCAU”

item exp integer S “ind~ x of ** in VIJCAb”

item exception integer p 0 $ “conta ins scanner excepti on
case num ber”

item f2’entries integer p 0$ “number of file2 entries ”

item f2bindex integer p us “index of last file2 entry ”

item f2hbytes integer p 0$ “no of bytes in last f2 entr~-”
item fO’blocksize integer p 60$ “si ze c-~~ a fileO disk
block”

item fI’entries integer p 0$ “number of filed entries ”

Item f2brecs integer p 0$ “no of record s in last 12 entry ”

H - -
- -

w -- -- - “~
—--

~~~~~~~~~~
----— - -  -

. 

~~~~~~~~~~~~~~~~~~~ 

-
- r—r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - -~~~~—------- —~~~~~ -- - - — - --~~~~~~~-~~~--~~~~—-~~--

array t2’bufter max’f2 characters “buffer contains
scatem uent unit text to be output to file2 ”

array fixl 100 i 36 s$ “not used”

array fixv 100 1 36 sS “not used”

item ident integer $ “index of <identifier> in VOCAB-”

item idloop integer p 0$ “utility variabl e”

item iddone integer p 0$ “utility variable ”

item kluge ’flag integer p OS “not used”

item kk I 3ó s p 1$ “utility variable ”

item kkk integers “not used”

item last’ident characterS “conta ins the charac ter
representation of the last identifier encountered by SCAN”

item last’token integers “cont ains t he index of th e last
token placed into f2’buffer by BUFFER’IIl”

item left’abs integer S ‘‘index of (I in VOCAE”

item left’paren integer S “index of (in VOCAB”

item letter integer p 9 S “identifies letters in array
TYPE”

Item left’exp Integer $ “index of (* In VOCAB”

Item left’subs integer $ “index of (S in VOCAb”

array lengths 30 integer $ “conta i n s len gths of var ious
term inal sym bols”

item macro ’flag Integer p OS “flags the fact that the
curren t token is part of a macro expansion ”

i te m macro ’name integer p OS “index into macro tables of
cur ren t macro nam e”

item rus ’fla g integer p 0$ “used by GETCI1I) to remember that
it is in the process of expand ing a macro ”

Item max ’nospah integer p 7$ ‘‘size of nospab”

item max’nospaa integer p 4$ “size of nospaa”

_ _ _ _ _ _ _
- --- -5 - - ----- --- — --~~~~~ ---- - — - - - —-5-—-- A

-
- - _s~~z.rz~~~ n_ -—---,-------—-- .-- J-.-——— •- -- - 5 - 5 —-5- -- —,------ -r - - -5— - - - --—- - — -

item max’nopaIr integer p 18$ “size of npair l and nopair2”

item msp integer p 24$ “poi nts at nex t f r e e loca tio n in
ms .-“

i tem max ’niacro integer p 0$ “points at nex t f r ee locat ion
in macro table (MS)”

Item mant’e integer $ “index of e in VUCAB”

item mp i 36 55 “points at l e f t edge of re duct ion phrase”

i tem main p’ptr Integer p 2$ “points to next tree
mainp’call s locat ion”

Item mptr integer p 0$ “internal variable to save macro
entry position ”

item m anti ssa integer $ “index of <rijantissa> in VOCAB”

Item mpp l 1 36 s$ “inp+l”

array ins max’msp characterS “stack used for GETURi) macro
definition expansion ”

array inname max’mtbl characters “mnam e, rn s t a r t, mnlength are
parallel arrays which m ake up the macro table (MS). mname
is the name of the macro”

array mlength max’mtbl integerS “length of definition in
MDT”

array mdt max ’iii dt characters “con tai ns text of macro
d e f i n it ions”

array ma inp’c a ll s max ’mainp h 30$ “fileO array to save r~ia in
program procedure calls , initialized to in-3icate main
program ca l l s” begin 3h(***) 4h (rtaIN) end

array mu start mnax ’iuthl integers “index of beginning of
definition in MUT “

item nil character $ “initialized in initialize to nil “

“contains 1 50h([00000 ...
item next’mn free integer p 0$ “points at next free l oca t ion
in MDI ”

item number integer S “index of <number> in VUCAB ”

item nuinber ’value integer S “conta ins v a l u e of num ber rea d
in ’’

1
~ ()

- - 5 - - - - - -~~~~~~~ -5 - -—- -~~~~~ ~~~~~~~~~ -- - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~

-
~~~~~~~~~~~~~~~ ~

—
~~

- r~ 
- -  - 

~~~~ -— —--- —S ~~~~~~~~~~ - - ,- -5- ~~~~~~

array nospab 8 integerS begin 37 40 38 39 6 55 lOS 9 end
“list of tokens which never have spaces before them ”

array nopair l 19 integer S begin 103 103 103 16 32
“nopairl (I) and nopair2 (I) cannot have spaces between
th em” JO II 106 15 II 67 40 71 73 64 63 84 60 25 end

array nospaa 5 integers begin 104 55 105 2 37 end “list of
tokens which never have spaces after them”

array nopair2 19 integerS begin 18 30 II 2 2 2 2 2 103 103 2
2 2 2 2 2 2 2 103 end

item ou ttok IntegerS “s ignals SYN TH that a f i l e l recor d
should be built , with stint unit = outtok”

item outscope integers “signals SYNTH that a fu el endscope
record should he built”

item phony integer p OS “tells GETORD to expand the most
prev ious macro name , and to pass as the next source card
that expansion ”

Item prime integer S “index of single quote in VOCAB”

item quote Integer $ “index of two single quotes in VOCAB-”

Item real’macro ’flag integer p 0$ “usua l l y the same as
macro ’flag, except in lookahead situations or when reading
former lookahead tokens from token stack”

item reserved’limi t integer $ “points at limit of reserved
words in VOCAB ”

item right’exp integer S “index of *) in VOCAB-”

item right’abs integer $ “index of I) in VOCAB-”

item ri-;ht’subs integer $ “index of 5) in VOCAB”

i t em sc a l e ’a integer $ “index of a in VOCAB ”

Item star integer S “index of * in VOCAB”

item stacksize i 36 s p 1 00$ “size of state stack ”

i tem save ’tog integers “use d by synthes i ze to set and reset
as is”

item sp i 36 s$ “sta te stack point er — poi nts at current
stat e”

41

- ---~~~~~~~~~~~~~~~~~~~~~ --- -5--

_ _ _ -

-5—
- -

~~~~~~~~~~~~~~~~

, -- ----

~~~~~~

--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_
~~:~

— item symbuf’ptr Integer p 0$ “points to next free symbuf
loca ti on”

i~~ m state i 36 s$ “conta ins curr en t s t a t e name”

a r r a y  s t a t e’stack IOU I 36 sS “used by CO~WILAilON ’LODP tosave state numbers in LALR (k) parse”

array syrimbu f inax ’symbu f h 30$ “fileO array to save
p roc edure c a l l s  w i th in p r ocedur es”

item to gmnax integer p 2$ “size of tog and togc-”

item tsmax integer p 0$ “po ints to rnext  f r ee entr y in
stack”

item tshegin integer p 0$ “points to next read token in
stack”

item text character $ “conta i ns cur ren t  t ext l ine f rom
GETC RL)”

item token integer $ “contains index of current token in
VUCAB”

i t e m  te m p m nk c h a r a c t e r S  “t emp o r a r y ”

item teuiph2 characters “temporary ”

item temnpi2 integers “tew~~ ra ry”

item teiriph3 characters “temporary ”

item tbe-gin integerS “index of begin in VOCAU”

item tend integers “index of end in VUCAB ”

item temn pc l h I~ 0$ “teii~porary ”

item total’f2’entries integer p 0$ “t~ ta l  no of f i le2
recor ds”

item tempid h 30$ “temporary ”

item tsptr integer p 05 “points to next lqpkah- -ad token in
token stack”

item text ’limnit integer p 0 S ‘‘contains index of last
cha rac te r  in cu r ren t tex t  l i ne” 

- -~~~ - - - —- - --~~~~~~~~~~~ 



- —— - - -~~~~~~ -

item tei~mph I characters “temporary ”

item tetnpi3 integers “temporary ’’

item tbeg in l integers “index of beçjinl in VOCAt3”

item temph4 characterS “temporary ”

item tempi l integers “temporary ”

item ternpc h 150$ “temap c and following two variables are
te m porar ies”
item tv integers “index of v in VOCAB ”

array togc 10 h 6$ be-g in Gh ( asis) 6h (expand ) óh ( debug) end
“conta ins legal toggle names-”

array tsn max integerS “tsn ,tsc ,ts b l , t s c r l f ,ts rn f l a g are
parallel arrays called the token stack. tsn is the number
of the token — sam e as t oken”

array tsbl max integers “same as blanks — refers to tsn ( i
), though.”

array tsmfla-j u max integers “same as macro ’flag — refers to
tsn( I ). “

array type 64 integer $ beg in 10 end “returns type of ascii
character , where value of character is index into type ”

ar ray  tog 10 i n t e g e r S  he -j in  0 0 0 0 0 0 0 0 0 0 end
“con ta ins  togg le  va lues ”

array  tsc m ax c h a r a c t e r s  “same as hcd — r e f e r s  to t s n (  I
)‘ ‘

aIi~~y tscrlf m a x  integers “sam e as crlf — refers to tsn ( I
) , tt-ough.

4.3.1.5 Declarations for Parsing Tables

array apply l 44/ 1 lO I S “ma tches s ta tes on s tate stack
for apply state transitions ”

array apply2 44/ 1 16 s $ “cont ai ns t rans i t ions
correspanding to matches in app lyl”

item asize i lO s p 446 $ “size of apply arrays ”

-- ---5 -—-5 -



_____________ - - 
- - - - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :.  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - ----- -~~

array index l 856 1 16 s S “points Into read l and l o o kl
arrays ; contains push states”

array index2 856 1 16 s S “conta ins count corr espondi ng
to index l— identified state”

array lookl 170 1 16 s $ “match es symbol s in lookahea d
states ‘-‘

array look2 170 i 16 s $ “conta ins t rans i t ions
correspond ing to matches in lookl”

Item lsize 1 16 s p 169 $ “size of look arrays”

item max ln 1 16 s p 456 S “start of push states in index
arrays ”

item maxpn 1 16 s p 456 $ “start of apply states in index
arrays ”

item maxrn 1 16 s p 395 $ “star t of lookahead sta tes in
index arrays”

item maxsn 1 16 s p 855 $ “largest state number ”

array nproduce’name 400 i 16 s $ “used to print
product ions ”

array nsta te’name 400 i 16 s S “used to print
product ions”

item pn i 16 s p 399 $ “num ber of product ions”

array read l 4147 I 16 s $ “matches sym bols in rea d
states ”

array read2 4147 1 16 s $ “conta ins t ran si t ions

corresponding to matches in readl”

item rsize i 16 s p 4146 $ “s i z e of rea d arrays ”

iterum start’state I 16 s p I S “state to start parse in-”

array state’name 396 i 16 s $ “use d to pr int
product ions”

item terminaln I 16 s p 106 S “num ber of terminal symbols-”

array vocab 285 h 30 $ “voca bu la r y o f a l l sym bol s in
grammar ”

item vocabn 1 16 s p 284 5 “size of vocab”

~ 0

- —- - -—--- - - - ~~~~~~~~ — - ---—-5----—-- —- ~~~~~~ -- -- - - - - - -

- - - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ____

4.3.2 Procedure Descriptions

The foll owing is a list of DOUG procedures and accom pany ing
descriptions of their function/operation. These procedures
are listed in the order in which they appear in the DDDG
source listing .

proc filei ’out (stmt’type)-$

Performs all f ilel output. Stmt’type is the type
of statement unit that the next file l record will
contain.

Filel ’out checks  to s ee I f  tab le f il e l b is f u l l ;
if so, it outputs the table and zeroes fl’ entries.
It then sets  the next fr ee row of tab le entr ie s to
th e cor rec t  stat ement un it ty pe , and loads th e
co r rec t  f i l e2 inf ormat ion f rom var iab les set by
file2 . Fl ’entries is then incremented .

proc fout (nerd ) $

Calls file l’ out and file2’out if the asis toggle
is off. Nerd contains the statement unit number
to he passed to tile l’out.

proc file2’out S

Performs all fil e2 output.

Operation is same as file l ’out , except that the
n um ber of lines , the num be r of charac te rs , an d the
cu rr ent abso lu te  recor d num ber of f i l e2 are save d
for use by file l ’out.

proc out (aa,cc)$

See description of string package in Section 4.1

proc suhstr (aa ,f i r s t ,num)$

See description of string package in Section 4.1

proc cat (aa ,hb)S

See description of string package in Section 4.1

proc cnver t (aa)$

See description of string package in Section 4.1

DI 

---~~~ 
- - - - — - -  -



— — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

proc spaces (nuun)$

See description of string package in Section 4.1

proc null (aa)$

See description of string package In Section 4.1

proc lermgth (aa)$

See description of string package in Section 4.1

proc recover S

Performs syntax error recovery functions. See
Section 4.2.2.4.1 for a good hi gh—level
description of this routine ’s function.

Recover begins by looping back through state’stac k
until sp = 0. I f  on the way one of those states
can read the current (illegal ) token (this is
determined by proc noconflict ), the parse is
re—started in that state. Otherwise , the token
is rejected and scan’call is called for a new
token.

proc noconfllct (current ’state) $

Searches current’st a t e’s read l array to find a
match to the current token. If there is one ,
noconflict returns 1. If not, it returns 0.

proc synthesize (production ’num ber)$

Controls the creation of the DOUG output databases
(files 0—2). Production ’number is passed by
comnpi lation ’loop parsing algorithm .

Synthesize Incorporates code associated with
several important syntactic reductions made by the

parser. All other reduction code is in proc
synth , which is just an external continuation of
synthesi ze.

Reduction to <program> : lurns off compilation
• flag ‘1 compi ling. ” v-dr ites out mnal np ’calls arra y,

which contains procs called by the main program.
If rmi ainp ’ptr is > than the fileO blocksize
(fO’blocksize) , then the array is written out to
more than one fileJ record .

—- - - --5--— — —--~~~~~~~-- -5 --- - ----5 -~~~~~--— -- -~~~~ —-—---- - - - 5 -- - -



~~~~~~~~~ ~~~~~~~~~~~~~ 
— z~ ~~~~~~~~~~ —~

—-,
~~ -~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

Reduction < “ > — > “: Sets exception= l for scan.
Then uses last’ident to enter macro name Into
macro table (mname). If the name Is already
defined , the old mname , mstart , an d m l e n g th
entr i es are use d; i f not , a new entry Is created.
M’leng th and u start are initialized to 0 and
next’mnfr ee (a pointer to next free mdt entry)
respectively.

Reduction to first part of an array declaration s
Ca l l s scan ’c a l l for tokens unt i l i t det erm ines
that the array declaration is initialized or
non—Initialized. If it is initialized , the begin
tokens read are changed to beginls. This code
makes for a significant reduction in parsing table
size and complexity.

Reduction to procedure or function call: If
context= l , th e name of the p roc i s loo ked up in
synbmJ f array — if it is there , it is ignored ; If
not , it is appended to symbuf. If the context=O ,
the sam e is done with the malnp’calls array. If
either of these arrays overflows , a mess age
appears on file0 and on the error file. Context
is set in synth cas es mark ing the beginning/end of
a procedure/function.

If production’num be r i s not equal to one of the
above reductions , synth Is called. On return , if
synth has set outscope , an endsco pe f i l el recor d
is wri tten. It outtok was set , file l and file2
records are written with stmt type outtok. An
ex am inat ion of the synth source l is t i n g shoul d
identify where these variables are set.

proc stack’dump$

Called during a parse error to dump the names of
the states in state’stack.

proc print ’production (prodn ,left’s tack n ,rlght’stackn)$

Calle d by synthesize when the debug toggle is set.
Pr ints the BNF pro duct ion which has just been
applied in the parse. Prodn is the production
number , left’stac kn poi nts at the new s ta te
numb er , and right’s t a ckn po in ts at the r i ghtmost
s ta t e in th a t par t o f s t a t e’stack involved in the
producti on.

53

-5 - - -~~~~~ -5

- ‘- ~~~~~~~~ - —- —n-- — —~ — — - — - - - —‘~~~~ — —
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ — _ :~~_~~~~~~~~~_ •

~•1

proc err ( aa , bb ) $

Pu ts out  i l le~ a1 characters encountered by scan to
error file.

proc get’num$

Inputs a nu iber from the terminal under RAUC
;4uLTICs GUOS cncapsulator . 4

Not used In DOUG — exists for debugging purposes.

proc scan’call (rea d’call)$

Ma intains token’st ack ; con trols scann er
invocation . 1-~ead’call identifies the type of
token wanted .

I f  read’call Is 1 , a read token is required . A
call is made to get’token , which uses the token
stack mech anism to return a read token. Scan’cal l
then checks to see if the token Is the start of a
comment. If so , it identifies the type of the
courmm ent by querying crlf and last’token. Scanner
exception 7 is set by the scanner Itself upon
reading a quote and noting that detine ’flag is 0.
Scan’call pulls in <characters> tokens from scan ,
one by one , until a quote token is detected. Scan
turns exception off , and control l oops back to the
beginning of scan’call to get a $S realll token.
After every token , ouffer ’In is called to put It
out to f2’bmjffer. Note that it the asis toggle Is
set, no text emanat es from scan ’call’s comm ent
outputting statements.

If the token was not the start of a comment ,
define ’flag is checked. If It is set,
<characters> tokens are read into the mdt as part
of a new macro definition , which has already been
Initialized by synthesize. The text is also
output to f2’buffer hy buffer’in .

If the token returned did not indicate a comment
start (i.e., it was not a quote), a check is made
to see if it is a macro name. Here , the expand

• flag Is used to decide whether to write the name
out to f2’hu ffer. It is always necessary to
preserve the leadin~ b lanks be f o r e  th e macr o name
if the asis toggle is set and the expand toggle is
off. If a macro name was seen , sc an’ca ll loo ps
back for a “reaP’ token; if not , i t r e tu rns  to i ts
caller.

54

J



— __ - — --5--- - 
— -~~r-~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ‘-— -

If the read’call flag is 0, scan’cal l  looks in
token’stack for lookahead tokens. I f  there are
none , i t ca l l s  scan for  one , then stacks it. If
the token it finds , by either method , is a macro
nam e or part of a comment , the token Is negated
and re—stacked , and another is fetched. This way,
su bsequent  l ook ahea ds can id ent i fy these
“non—tok ens” and i gnore them ; but at the same t ime
they are p reserve d for  even tua l  process ing by t he
read portion of scan’call. Comment of macro
processing cannot take place in a lookahead
con di t ion — the  act ion t aken by t he process ing
routines stands a good chance of being tem por a l l y
incorrect.

proc tocjgle’proc (c ’token)$

Finds comment toggles inside comment text.
C’token Is the passed comment text.

Toggle’p roc f inds occurrences  of to gg les w i thi n
comments by searching for “ [ “ . If found , it
extracts all text between “ ( “  and “1” , an d t hen
compares this text to entries in array togc. If a
match is found , the toggle is turned either on or
off , as described in the User’s Manual. Toggle
values are held in parallel array tog.

proc buf (flag ’last ,flag ’trail)$

Formats and puts out current token text to
f2’buffer. k-lag ’last and flag ’traIl indicate
whether  to p lac e blanks  before  or af ter the
current token text.

If flag ’lnst is 1 , buf dele t es t he last  spac e from
the last used line of f2’huffer. If flag ’tra il is
set , hut a ppe nds a space to t he cu r r en t  token
text , bcd. Buf keeps a count of the total number
of lines and characters in f2’buffer , which
information will be used later by filel ’out and
file2’out. Most of buf is concerned with correct
filling of f2’buffer (no text chopped off , no
extra spaces). Its only anomalous behavior occurs
when the asis toggle is set. Then, huf
concatenates spaces (blanks ) to hcd before writing
it out. Mhen crl f is set in this mode , bu f c a l l s
file2’out and file l’out to put out an asis line.
It then outputs the concatenated bcd to an emptyF f2’buffer.

55

- -5 - - - -  ------



- - ~~~~ 
- r~~r - - - - - - --- - - - - -~~~~ ____________

proc b u f f e r ’i nS

Formats source text and calls but.

l3u f f e r ’in uses formatting information in arrays
nopa i r l , nopa i r2 , nospaa, and nospab p lus
last’token and token to decid e whether  to add or
subtract spaces from in front or after the current
token text. It ca l l s  buf with its decision. If
the asis toggle is set , but is called with (0,0).

proc get’token$

Per fo rms  r ead token  f u n c t ion for  scan’call .

Get ’token  searches the tok en stac k for a r eadab le
token. If one exists , i t Is rea d, and the stack
updated to delete it. I f  one does not exist , a
call to scan is made. Control then returns to the
caller.

proc stack’token (negate)$

Performs  lookahe ad stack i ng func t ion for
scan’call. Negate indicates whether the token
should be negated before stacking.

Stack’token simply stacks the current token ,
negating it If negate is I.

proc numj (aa )$

Prints out an integer quantity on RADC MULTICS
OCOS Encapsulator.

Not used , exists for debugging purposes.

proc compllation ’loop$

Performs LALR (k) parsing algorithm .

Uses the ta b les descr ibed in r e f e r e n c e  7 to parse
the input source code. UompIlation ’loop varies
f rom the system descr ib ed in r e f e r e n c e  7 in some
ways — f or ins t ance , a binary search is done on
the rea d s ta tes , and th e r ecovery al gor i thm works
differently. Further Information about the
parsing algorithm is available in any good parsing
text. It Is rec omasnended that this routine be left
str ictly alone by system maintenance perso nnel.

56

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
—--5

proc print ‘summary$

Used to print summary of the compilation.

Not used in the current DDDG.

proc mnai n’procedure$

Starts and controls DDDG.

Ma in’procedure ca l l s com pi lat ion ’loop, then
pr1nt~ summary. It also outputs the remains of
f i les I and 2 , wh ich may not have been output.

proc chartype (symbol) $

Charty pe Is a u ti l ity rout ine wh i ch inte rrogates
the type array with the ASCII value of the single
charac te r conta i ne d i n the converte d charac ter
string symbol. The reasons for making chartype a
f u n c t i o n i nvolve d improved code rea dabi l i ty an d
JOCIT compiler di fficulties .

proc get crd$

Reads in source cards for scan ; expands macros
from rndt.

If getcrd detects that phony= I , it knows that it
must expand the current macro. The index of the
cu rrent m acro (that Is, th e index into mname ,
r n s t a r t, and mlength) is in macro’nam e. Getcrd
s tacks the rema ins o f the cur ren t card In to ms ,
which Is then pushed down. The m acro definition
is then rea d in backw ards in to the ms , card by
card. Until the ms is exhausted , getcrd continues
to return cards from it on successive calls.

Other getcrd funcIons are setting the crlf flag
and correctly orienting the 80—byte inpu t cards
within the converted character string called text.

Note that a recurs ive macro def in i t ion wi ll cause
th e ms to over f l ow, with an appropriate message.

proc index (stringl ,string2) S

Returns index of first occu rrence of strlng2 in
string 1.

Most of index’s code is concerned with calculating
co rrect offsets for converted strings.

Index returns 0 if string2 is not in strlngl .
5-I

- —- ~~~
—

~~——~~~~‘---=--
—

~~~
—

~~~
-

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
—

~~~~~
-—- —-—— —

~~~~
— -

~~~~
-

—

proc initialize S

In itializes scan databases , cr it ical D000
van ables.

In itialize assigns values tc mnemonic variables
such a m a n t i s s a , s tar , etc. such that they point
at the ir app ropr iate match In a r r ay VOCAB.

It also in itializes the lengths array (used in
scan to speed token matching), the type array
(sam e purpose), opens various I/O files , and
initializes certain critical quantities.

proc not’letter’or’digit (symnb) S

Uses type array to determ ine whether the f irst
character of symb is a letter or a digit. (see
chartype description).

Returns true if symb Is not a letter or a digit.

proc scan $

Performs scann ing function of LALR parsing
algorithm.

Scan separates input source into meaningful
language entities called tokens. Tokens are
reserved wor ds , user—defined symbols , an d special
symbols (+ ,— ,*, etc.).

The scanner begins operation by initializing some
token data items (blanks , crl f , macro ’flag, bcd).
It then updates the current text card to ignore
the last token read. If there is no more text on
the car d, a new card is read using getcrd. A case
st unt i s th en en te r ed , on the var iable “exception ”.
U s u a l l y , exception is zero. In this case, another
case s tmt is pe r f o r m e d on t he f i rst character of
the r~ew text (us ing chartype). An examination of
the scan source listing or the scan Structured
Design Diagram shows how this first comparison
actually traps most token possibilities. Case 6
of th i s in t e r n a l case stmt r~i cks up b l a n k s , and
bumps up the variabl e “blanks ” for each blank it

• rece ives. Case 7, which detects ““ , sets
exception=7 to pick up comment text If define ’flag
is 0. Case 8 picks up numbers , and case 9 deals
wi th user—defined symbols (identifiers). It also
det ects macro ca l ls an d se ts up the necess a ry
mechan ics so that getcrd is flagged correctly and
called to expand the macro.

58

~

- - - - - - - - - -5-5 -5-- -

F - -
~~~~

-
~~~~~~~~~~~

- ~~~~~~~ T I~~~~~~~~;
_ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~ =— -— 

~~~~~~~~~~~~~~~~~~~~~

—

~~~~~

- —

If exc eption l , the scanner  reverts  to a mode
wher e it sends <characters> tokens which
correspond to text between sets of quotes. This
case is used by scan’call to get text from macro
definitions. Exception case 2 Is used to read in
Holler ith constants (using the number’value  of the
number in the constant). Case 3 sends
<ch aracters> tokens between the keywords “direct”
and “ jovial” . It also sets the asis toggle , since

- - t hi s ass emb ly code cannot be f l owcha r t e d
reasonably. Case 4 picks up text between “v (” and
“ ) “  In s ta tus  constants , an d cases 5, 6, d, 9, and
10 are used to overcome certain JOVIAL constructs
wh ich give the scanner mechanism trouble. Case 7
is used for comment text recognition.

4.3.3 Local Declarations

proc buf (flag’last ,f l a g’trail)S

I tem f l a g’last b$ “if set, delete last  space in
f2’buffer”

i tem f l a g’trail bS “add a space to thi s token”

proc bu f f e r ’inS

i tem f l a g’last b$ “set this to delete last space-”

i tem f la g’tra il b$ “set th is to add space to current
token”

item tempi l integers “temporary ”

proc chartype (symbol ) $

item chantype integer S “resul t  quant i ty”

item symbol character $ “used as index into type array-”

proc comnpilation ’loops

i tem guess I 36 s$ “contains latest binary search guess”

item Ii 1 36 s$ “temporary”

59

_—_ _ -



— ~~~~~~~~~~ -— -5 -
~ —•~

-— 
~~~~~~—•-

item j j 1 36 s$ “temporary”

item overflow h 150 p 14h(stack overflow)$ “error”

F item state 1 36 5$ “current state num ber”

item temp 1 36 s$ “temporary ”

i t em top i 36 s$ “upper l i m i t on gue ss loo p ”

proc err(aa,bb)$

Item aa h 150$ “message s t r i ng”

item bb i 36 s$ “unused”

proc filel’ out (-tmt ’ty pe)$

item stmt-’type integers “type of stmt , put In file2”

proc file2’out$

proc fout (nerd) $

item nerd integerS “also ty p e of s tmt , put in file2-”

proc getcrd$

item done b$ “binary f-lag in while loop”

item getcrd integers “resu l t s tr ing”

item temnph l characterS “temporary”

item tempI2 IntegerS “temporary”

Item ternp Il Integers “temporary”

proc get’num S

Item get’num 1 36 s$ “resu l t s tr ing”

60

._ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ -

item kk I 36 s$ “temporary ”

item strng ii 6$ “contains hollerith of number”

proc get’token$

proc index (stning l ,string2) $

Item Index integer $ “result string”

item length l integer $ “length of string I”

Item length2 integer $ “length of string 2”

item string i character $ “mi ght conta in an instance of
string2”

item string2 character S “might be contained in stringi”

proc initialize $

i tem cur ’lngth integer S “length of group of current
nonterms ”

I tem cur ’termn character $ “current terminal-”

item digits h 10 p JOh (0123456789) $ “numbers”

item index integer $ “vocab index of current terminal-”

item letters h 26 p 26h (abcdefghi jklmnopqrstuvwxyz) $
“letters”

it em new ’lngth integer $ “length of current terminal-”

item special’char h d p 8h (= (S/.* ‘) $ “ stand—alones ”

I t em tem p’term h 30 $ “temporary ”

proc main’proceciure$

proc noconflict (cu rrent’state) $

item current’state 1 36 s$ “current state-”

6 1

- -

~

- - - ---- “ - - -

—-5 -
- - - -

- —~~~:~~:==~~~-::_
-

~~~~~~~~~~~~~ ~

- - — -

~~~~~~~~~ 

-

~~~~~~~~~~

Item Ii 1 36 s$ “temporary ”

item noconflict b5 ‘‘true when state in stack can read
token”

‘I

proc not’letter’or-’diglt (syunb ) $

item not’letter’or ’dlg lt b $ “true If synub is “weird””

item null h$ “temporary ”

item symb character S “passed char acter”

proc numj (aa)$

item aa 1 36 s$ “num ber to be output”

i t e m  bb h 6$ “h o l l e r i t h  of number ”

proc print ’production (prod n,left’stac kn,right’stackn)$

item aa h 150$ “temporary ”

item bb h 150$ “temporary ”

item cc h 150$ “temporary ”

ite n) ccl h 6$ “temporary ”

item j.j 1 36 s$ “temporary ”

item kk 1 36 s$ “temporary ”

i t e m  l e n t h  1 36 s$ “t e m p o r a r y”

item left’stac kn i 36 s$ “index into stack of left end of
prod ”

item line h 150$ “output line built”

item procin 1 36 sS “production number to be dumped”

Item rlght’stackn 1 36 s$ “see left’ s t a ck n ”

proc pnint’summary$

3’



__________ - - 

proc recover S

item end’of’file h 150 p 16h(abort on bad eof)$ “error”

item recover 1 36 sS “conta ins recover y stat e”

i tem rec over’modify h 150 p 14h (modified parse)$ “error-”

Item tsp 1 36 s$ “ne w stac k pointer  in inter una l loop”

item temp I 36- s$ “temporary ”

proc scan $

item bcd’lng integer $ “length of current token-”

item done b $ “while loop flag ”

i tem key’Index integer $ “index Into terminals ”

item ternp ’char character $ “temporary ”

item temp ’string character $ “temporary ”

item terminate integer $ “temporary Index into text”

proc scan’call (read’call )S

item aa characterS “temporary”

item bb characters “temporary ”

Item done b$ “while loop flag ”

item read’call integers “If 1 ,rea d c a l l ;  i f 0,look ”

item temphi characterS “temporary ”

Item temph2 characters “temporary ”

item temp ll integers “temporary ”

ften teimupi2 integerS “temporary ”

proc st ack ’ du m p $

item aa h 150$ “tem porary”

ite .m line h 150$ “output line built”

63

) 

- -~~~~~~~~ -- --5 -~~~~ -~~~~~~~~ --5 - --5- - -  -5- - -- - - -  A



- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - 

~~~~~
- 

- -  ——
~~~~—---— — ~~~— - -

proc stack’token (negate)$

item negate IntegerS “it on, stack —token-”

Item tem phi characterS “temporary”

proc syntheslze (production ’num ber)$

i tem produc t lon ’numher integerS “current production ”

proc toggle’proc (c’token)$

i te r u m c’token characters “comment text string”

i t em o f f o n i n t ege r s “f l a g de t e rmines toggle on and of f ”

item temphi characters “temporary ”

item temnph2 characters “temporary”

i tem t~ ~p il integers “temporary ”

item templ2 integers “temporary ”

4.4 Data Files Pass-ed to Phase 2

Data f i les created by Phase 1 for use by Phase 2 and the
Invocati on Diagrammer are referred to in all Design
Diagrammner documentation as FILE 0, FIL E 1 , and FILE 2.
Their exact JOVIAL definitions can be found in Section
4 .3.1.3.

FILE 0 is used by the Invocation Diagrammer to create
invoc ation diagrams. It consists of fixed—leng th blocks of
character strings. The blocks can be deciphered using the
fo l low ing heur ist ic: if the f irst en t ry In a b lock is
“*** “ , then the next nam e encountered in the block is the
name of the procedure which calls -all other procedures
listed in the block. If the first entry is not “***“ , then
t r ea t th is b lock as thou gh i t were a cont inuat ion of the
last block.

F i les I an d 2 are rel ated , i n tha t FILE 1 po ints at
locations wi thin FILE 2 and contains information about them.
Althou gh both tiles are blocked by the DDDG, they can be
thought of as sequential and unblocked. Each FILE I record
consists of four integer fields : an index into FILE 2, a
st at emen t ty pe num ber , a rec ord counter , and a character
count. The Index into FILE 2 points at the firs t FILE 2

64

-
—~~~~~~~~~~~~~ --5— - - -5 -~~~~~~~ - --5-5-5 - — - -

r -

-

- -- - :~~~~_ ~~~ —

record which the FILE I record describes. It contains the
absolute numb-er of the FILE 2 record , starting from 0.
State m~uent type contains a description of the statement type
of the FILE 2 record. A full l ist of statement types , or
“s t a t emen t tokens ” , appears in Appendix B. The record
counter indicates how many FILE 2 records are involved in
the statement token. The character count contains the total
number of cha rac te r s in the s t a t e m e n t token.

FI LE 2 contains the text of statement tokens found in the
input program . Each statement token occupies one FILE 2
record , unless its total length requires more records. The
text in FILE 2 is formatted so that left—out or extra spaces
In the i n p u t text do not appear in the final flowchart, If
-FI LE 2 were treated as a continuous stream of characters , it
would be functionally identical to the input program text.

4.5. Design Diagram Generator (DOG) Program Structure

The DUG is responsible for creating design diagrams from
the data base created by the DDDG.

The execution of the DUG is broken into two distinct parts.

Part I of the DUG accepts user options which describe the
desired format of the diagram (see the JSDD Users Manual for
a complete description of user options). It builds an
intermediate data bas~ (se e section 4.5.1) which defines the
diagram according to the user supplied specifications.

Part I Is described In sectIon 4.5.2.

Part 2 of the DOG uses the Information in the intermediate
data base to extract and format text from File 2 (the
program text file created by the DDDG) and produce the
design diagram .

Part 2 is described in section 4.5.3.

Section 4.s.4 describes Phase 2 input/output.

Throughout t hi s sect ion , references are made to DUG
proc edures which are described in Section 4.6.

4.5,1. The Intermediate Data Base

The Intermediate data base consists of two disk files: FILE
3 and FILE 4, and a core res ident tables GROUP.

65

-5-- - -5- -

—~~ -~~ -

FILE 4 contains a set of records for each statement unit
conta ined in FILE 2. The number of record s in a set is equal
to the number of lines that the statement unit will occupy
in the design diagram . A set of FILE 4 records will contain
a pointe r Into FILE 2 and information .r el at lng to the len g th
and line breaks of a statement unit.

Section 4.5.1.1 contains a complete description of FILE 4.

FILE 3 is a collection of binary trees which completely
describes the desi gn diagram be i ng created. Each FILE 3
record corresponds to a code block (or box) in the design
diagram. It contains pointers into FILE 4 Indicating what
FILE 4 recor ds per ta in t o the st atem ent un its wh ich ar e to
be elements of the code block. Each FILL 3 record also
conta ins block si ze , type and placement information as well
as pointers to other FILE 3 records (which indicate Its
position within its tree). There is a tree in FILE 3 for
each program , procedure declaration , close declaration and
stum p (se e Section 4.5.2.2.3) encountered in the input file.

FI LE 3 is described in section 4.5.1.2.

The GROUP table is a l i n k e d l i s t w h i c h c o n t a i n s t h e record
num b ers of the roots of FILE 3’s trees. It is described in
Sect ion 4.5.1.3.

4.5.1.1. FILE 4 Description

FI LE 4 is made up of two types of records: header records
and line break records. Each statement unit has one (and
only one) header record associated with it.

A header record has three fields :

F2’PTR
A pointer into FILE 2 describ Ing the location of the
statement unit.

LINES’OUT
The num ber of lines that the statement unit will occupy
in the design diagram .

MAX ’L INE’ LNGTI-I
The length of the ion-jest line of the statement unit.

Line break records describe where a line of text composing a
statement unit will be broken in order to comply with the
user supp l i ed ST ’MAX op t ion (ST’~~AX is the m a x i m u m number of
text characters that can appear on one l i n e of a code b lock
— see JSDL) User’s Manual) • A statement unit will have
LI NES’OUT— I line break records associated with it.

66

-5- - - - --

-
-
~~

--— --- - -- - ------- -
~~~~~~~~~~~~~~~~~~~~

Line break records have two fields:

F 2’ RE C
A pointer into FI LE 2 Indicating the record In whi ch
a line break is to be made.

F2’BYTE
The byte in F2’~ EC at which the break is to be made.

4.5.1.2. FILE 3 Description

Each FILE 3 record contains all information necessary for
the place m ent of a code block in the des ign diagram.

A FILE 3 record consists of 14 fIelds :
F4’ B EU I f-J

A pointer to the FILE 4 header record which points at
the first statement unit of the code block.

F4’ Ef-4L)
A pointer to the last FILE 4 record (header or line
break ) pertaining to the last statement unit to be
displayed in the code block.

STMT’ UN I T
The type of code block described by the FILE 3
record. See Appendix B for a list of code block
(st atement) types.

START ‘CO L
The page column on which the code block ’s display
will begin.

BLOCK’N 10TH
[he length of the longest line of text to be
displayed In the code block.

STIJP’COL
The page column on which the code block’s display
will stop.

START’LI NE
[he line on which the code block’s display will
begin.

LINES
The number of lines spanned by the code block (not
I n c l u di ng l ines fo r  page hea di ngs wh i ch may be
embedded in the code block ).

STUP’LI NE
The line on which the code block’s display will end.

H’ PTR
• Hor izonta l pointer. If H’PTR Is non—zero, the I-ILL 3

record containing it is a contro l phrase (see
Appendix B ). H’PTI-? points to the FILE 3 record
which begins the scope of control phrase. The code
block defined by the -FILE 3 record to whIch H’PTR
po ints w i ll  a pp ear to the r igh t of the  code b lock
whose FILE 3 record contains the H’PTR. A zero H’PTR

b -I

_ _ _  _ _ _ _  -- --~~~~~~~~~~~ --5 -  -5 - - - -



-~~~ 
- - - -

indicates that there is no horizontal scope for the
record containinj it.

V ’PT R
Vert ical pointer. A pointer to the FILE 3 record
which describes the code block that will appear under
the code block whose FILE 3 record contains the
V’ PTR.

BACK’H
[he inverse of H’~ Tk.

B AC K’ V
The inverse of V’PTR. Each record in a FILE 3 tree
can have at mo-st one “parent” , so BACK’H and BACK’-I
cannot both be non—zero.

MI D PT
The line of the code block’s display which is its
midpoint. Thi s field is meaningful only for contro l
phrases.

4.5.1.3. G~UUP Tabl e Description

GROUP contains a set of entries for each of FILE 3’s trees.
I t s  entr ie s ar e:

F3 ’RE C
A pointer to the root of a FILE 3 tree.

FROM’ PAGE
If the tree indexed by k-3’REC describes a stump, then
this entry wi ll contain the number of the page of the
diagram on which the stump was referenced .

NEXT
Ihe link to the next tree ’s pointer in the diagram
sequence.

PAUE’HEF
In  dart  1 , this entry will contain the nur~her of
pages that the tree will occupy. part 2 will compute
from this the -page number on which the display of the
tree will begin.

P RUE ‘ N AME
[he nam e of the program , p roc edure or c lose  whi ch the
tree describes. If the tree describes a stump, then
PROC’NAME is filled with blanks.

[he order in which UH(]UP’s entries are linked together wi ll
determine the order in which the trees to which they point
wi ll appear on the diaqrari~. [hat ordering is in accordance

• with the following rules:
I ) A stump subtree (see Section 4.5.2.2.3) will appear
i mme di a te l y  a fter t he t r ee  to wh i ch i t is lo gically
connected.
2) The tree describing the main proaram will appear first.
3) Procedure declarations and close declarations will aopear
in the order in which their declarations appear in the Input
program.

áh

— -- -- ---- -- —
-5 -- -- -5 - - ~~- -5 - - -  - ~~~~~~~~~ -- ~~~~~~~~~~ --—— -

~~~
-— -5——

-, - -1
~~~~~ - —- 

- -:
~
-- — —

~~~~~~~~~
-
~

~~~~~~~~~~~~~~~~~~~~~ ~~

‘
~~ ‘ ‘ T ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

- r

4.5.2. Part I of the DUG

Part I of the DUG generates the disk resident intermediate
data base and a lso  generates a cor e r es ident interme diate
data base (a tabl e called GROUP). Although generation of the
three units of the intermediate data base takes place in
pa r a l l e l , i t Is conv en ient to di scuss  thes e funct ions
separately. Section 4.~~.2.1 describes FILE 4 generation and
Section 4.5.2.2 dIscusses generation of FILE3 and GROUP.

4.5.2.1. FILE 4 Generat ion

FILE 4 contains the information needed to break up statement
un its into text lines whose lengths are compatible with the
user supplied ST’4AX option. In order to accomplish this ,
FILE 1 must he read and its FILE 2 pointers must be followed
to perform text analysis.

Upon reading a FILE I record , a mapping Is made of the FILE
I STMT’TOKEN field onto one of eleven values of STMT’TYPE
(th is ma pping is performed by the function BOX’MAP).

If STMf’TYPE conta ins a value equal to CONTROL’l ,
CONTROL’2, (XJNTROL’3 , or CONTJ~OL’4 then the statement unitto which it refers Is a control phrase (e.g., IF  CONDITIO N
$ is a contro l phrase whose STi-4T’fYPE is C1JI-JTROL’2). Each
contro l phrase has associated with It a block of code whi ch
is referred to as Its scope. The scope of a contro l phrase
is that block of code whose execution is controlled by the
contro l phrase. Following the control phrase and Its scope ,
a dummy statement unit having the STMT’TYPE END’SCOPE
appears. ENO’SCOPE signals the termi nation of a control
phrase’s scope. END’SCOPE is referred to as a dummy
statem ent un it because it is not a part of the g rammar wh ich
defines the syntax of JOVIAL J3.

If STMT’TYPE indicates that the statement unit to which the
current FILE I record refers is a printing statement unit ,
then a set of FILE 4 records must he created for the
statement unit. Otherwise , no FILE 4 records are created.

A set of FILE 4 records consists of one header record
follow ed by any number (including zero) line break records
(S ee Section 4.5.1.1).

If STMT’LNUTH (from FILE I ) does not exceed ST’MAX , then  th e
header record is the only record in the set. The statement
un it to wh i ch It r e f e r s  w i l l  appear on a s ingle l ine of the
diagram. LINES’OUT is set to I and MAX’LINE’LNGTH is set to
the length of the statement unit.

69 



- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — -~~~~~~~~~~~~~~~~~

If STMT’LNGTH exceeds ST’MAX , then th e s ta ter ~ent unit will
appear on two or more lines of the diagram. An attempt is
made to break the statement unit at a space. However , If
th is Is not poss ib le , the st atem ent un i t is broken such that
the length of the line of statement- unit text is equal to
ST’MAX.

The statement un it is actually broken by setting the values
of the pointers (i-2’J-~EC and k-2’bYTE) in the line break
record to the record number and byte (in FILE 2) at which
the break will occur.

Each line break record corresponds to one break of the
statement unit’s text.

LINES’OUT and MAX’LINE’LNU [I-I are updated after each line
break record Is created.

The procedures controlling FILE 4 creation are BOX’MAP and
CREATE ‘Fl LE4’~ECS.

4.5.2.2. FILE 3 and GROUP Table Generation

FILE 3 contaIns binary trees which define the printing
sequence of the code blocks. Each FILE 3 record contains all
the In fo rmat ion necessary to p r int the code b l ocks on the
diagram. The table GROUP contains poInters to the root of
each of the trees in FILE 3.

FILE 3 generation can best be understood as a three part
operat ion where the three parts are r ecor d in it ial izat ion,
record continuation and record closure. These operations
are discussed In Sections 4.5.2.2.1, 4.5.2.2.2 and
4.5.2.2.3 , respectively.

4.5.2.2.1. Record Initialization

A new FILE 3 r ecor d is in i t ial ize d wh~ n it becomes evident
that a new code block Is needed (see Section 4.5.2.2.3 for
the conditions).

Record initialization consists of entering available
in fo rmat ion int o the new recor d and zer oing f ie l~ s that
require information which is not yet available.

Imme diately upon recognizing the need for creating a new
record , the follow ing fields may be assigned: F4’BEUIN ,
F4’END, STMT’UNIT, BLOCK’~~ID TH , LINE S, BA CK’H and bAUK’V .
Of these , F4’END, BLOCK’~’-IIDTH and LINES are subject to
revision if the record is continued.

/0

rp ~~~~~~~
-

—
~~~~~~~~~~~~~~~~~~~~~~~~~ -=~~~~~~~ -~~~~- 

— ~~~~~~~~~
- 

~~~~ -~~~~----~~ —
—— ---5-----

-5 -5-,

Record initialization is handled by the procedures
UPDA TE ’t-1LE3, EWEATE’l-I’PTR’REC , CREATE’ V’PTR’~ EU and
INITIAIt ’NECUJRD .

4.5.2.2.2. Record Continuation

A record is said to be continued if the next set of FILE 4
recor d s r e f e r s to a statement un it wh ich shoul d be inclu ded
in the current code block.

Record continuation will occur under the following two
cond i t ions :
I) The next set of FILE 4 records refers to a ‘type—I’
comment. (See Appendix E)
2) The FILE3 record does not describe a control phrase and
the next set of FILE 4 records refers to a statement uni t of
the same type as those included In the FILE 3 record .

Record continuation consists of resetting F4’END so that the
p next set of FILE 4 records is included in the FILE 3 record.

The BLOCK’?4IDTH and LINES fields of the FILE3 record are
also updated accordingly.

Record continuation is controlled by the procedures
UPDATE’FILE3 and CONTINUE’BOX .

4.5.2.2.3. Record Closure

Record closure is the operation which assigns those fields
in the FILE 3 record which define the positioning of the
code block on the diagram (they are START’EOL, STOP’COL,
STA R T’LINE , STOP’LINE and MIDPT).

Al so , record closure may cause a new FILE 3 record to be
initialized (as described in Section 4.5.2.2.1).

A record is closed when the decision is made that no mo re
statement un its w i l l appear in the code b lock def ined by the
record. This decision is based on the STMT’TYPE of the
statement unit to wh ich the next set of FILE 4 records
r e f e r s

A FILE 3 record will be closed upon satisfying eithe r of the
f o l l o w i n g cond it ions :
I) The dummy statement unit END’SCOPE Is encountered.
2) The next set of FILE 4 records doesn’t satisfy either
condition for record continuation (see Section 4.5.2.2.2).

Satisfaction of closure condition I indicates that the scope
of a contro l phrase is be ing term inated. The record be ing
closed is the last record within the scope of the most

fl

_ _ -5- - - —-—-5”-
~~~~~~~~~-



- 
-
~~~~~~~~~~~~~~~~

- - - - -- _ . -
~ ~~~~~~~~~~

— -
~~~~~~~~~~~

recent ly created control phrase  record.  The f u n c t i on s
performed at this time are the positioning of the code
block on the diagram and a return to the record defining the
contro l phrase whose scope is being terminated.

Return ing to the control phrase Is accomplIshed by following
BACK’H and BACK’V pointers until a record that defines a
contro l phrase Is found. There are two possibilities at this
point. Either an END’SCOPE will be encountered (in which
case more backup will be performed ) or a new record will be
initialized and pointed to by the contro l phrase record’s
V’PTR.

Sat is fac t ion of cl osure cond i t ion 2 ind i c ates that a new
code block (and a new FILE 3 record ) must be Initialized . It
must be pointed to by either the H’PTR or V’PTR of the
record being closed.

The determination of whether H’PTR or V’PTR will point to
the new record Is made by examining the value of the
STMT’UNIT field of the record being closed. If STMT’UNIT is
equal to CONTROL’2, CONIROL’3 or CON I~ CJL’4, then th e recor d
being c lose d is a contro l  phrase wh i ch must po int at a
horizontal scope. If H’PTR is zero, I t i s set to po int at
the new record . The BACK’H field of the new record is set to
point at the record being closed .

In all other cases , V’~-~TR w ill point to the new record (and
BACK’V of the new record will point back).

Re gar d l ess  of wh i ch c losur e condi t ion was sat isf ied , the
code b lock def ine d by the record under going c losu re  mus t be
placed in the diagram. This function is performed by the
procedure PLACE.

PLACE finds the father of the code block by following either
the BACK’H or BA CK’V pointer (if one of them is non—zero).
If the father is pointed to by the EACK’i-I pointer , then
PLACE w ill attempt to position the code block to the right
of the code b loc k def ined by the father. If the father is
pointed to by F3AUK’V , then PLACE will attempt to position
the code block under the code block defined by the father.

If ne ither I3AEK’H nor I3ACK’V is non—zero , then the record
being placed must have a STMT’Ut4IT field equal to CDNTROL’I.
This means that the record describes a <PROGRAM HEAD> , <PROC
DESCRIPTOR> or <CLOSE HEAD > and that it is the root of one
of the FILE 3 trees. There will he no way to access this
t ree roo t f rom any ot her tr ee in the f i le , so the rec or d
num ber of the root must be inserted into the GROU P table.
This function is performed by INSERT.

12

- -5 - 5  - - - - 5  -~~~~~~~~~~~~ --- -—-- -5 - - -~~~~~~~~~~~~~- ---- - -5 - - - 5 -- - - 5 - - --



F.- — —,-,--- - - — ,•..- — ---
~~~~~~~~~

.- — -5—
— — •__•___ - —-5— - - - 5 - — - ----5- ,——. —

~~1•~

Code block placement fails if an attempt Is made to assign
to STOP’COL a value which exceeds PAGE’V4IDTh. The code block
is referred to as a stump . A stump is defined to be a
subtree which does not fit In the avai lable number of page
columns.

After a stump Is detected the procedure RESOLVE’STUMP finds
the root of the stump. The root of a stump is not
necessar i l y the code b lock that caus ed the placement
fa ilure. Type—2 comments and UONTROL’3 code blocks are not
legal stump roots. If the code block which caused the
p lacement fa i lu re is no t a legal stum p r oot , then BACK’H and
BACK’V pointers are followed until a legal stump root Is
found. Care Is taken to assure that the position of the
father of the stum p root on the diagram w i l l a l low the
display of a stump reference box.

v~hen the stum p root Is foun d, the H’PTR or V’PTR by which
its fatner accesses it is negated in order to indicate that
the code block is a stump root. The BACK’H or BACK’V pointer
by which the stump root accesses its father is also negated.

The stump root and all of its descendents must be positioned
on the diagram . This is done by repeated invocations of
PLACE from w ithin a tree traversal algorithm (see Appendix
A).

Stum p roots are inserted into the GROUP tab le in a manner
similar to tree roots. Even though each stump root is
access ible from some record in one of the FILE 3 trees, the
stump root is treated as the root of a separate tree .

It should also be noted here that all values placed In the
START’LINE , STOP’LINE and MIDPT fields of FILE 3 records are
relat ive to the trees to which they belong. That is, every
recor d being pointe d to by a GROUP t ab le entry Is t reate d as
if the tree of which it is the root is the only tree
described in FILE 3. Relative line numbering is necessary
because In it iat ing a new t ree does not guarant ee that the
old tree has been completed. The number of lines that will
be s panned by code b loc ks descr ibed by the ol d t ree w i l l not
be known until its processing has been completed. Relative
lIne numbers will be made absolute in Part 2.

~hen an insertion is made into the GROUP table , the l ine
informa tion relating to the current tree is pushed onto
LAYOUT’STACK so that it may be retrieved when the new tree’s
processing has been completed.

73

1

- - -- - -
-

______________ ________________________

4.5.3 Part 2 of the DOG

Part 2 of the DOG is the output processor. It traverses the
FiLE 3 trees generated by Part I and outputs a code block
for each FILE 3 record.

Each FILE 3 record having a STM~[’UNIT fiel d equal to
CONTROL’l (i.e. each FILE 3 record which describe s a
<PROGRAM HEAD> , <PROC DESCRIPTOR > or <CLOSE HEAD>) Is the
root of a FILE 3 tree. Also , any record having a negative
BACK’H or BACK’V pointer is the root of a FILE 3 tree (i.e.
such records are stump roots. See Section 4.5.2.2.3). Each
tree in FILE 3 has an entry in GROUP whose F3’REC item
points to its root. The entries in GROUP are linked
together so that they may threaded through in the order in
which the trees wi ll appear on the design diagram.

• The first major task performed by Part 2 of the DOG is the
assignment of a reference number to the PAGE’REF item in
each entry of GROUP.

If the HEADING option Is on , then the r e f e r e n c e num bers w i l l
be pag e numbers. The page numbers are calculated by
f o l l ow ing the l inks throu gh GROUP and accumulat ing the
values that Part I stored in each entry’s PAGE’REF item . The
values stored there by Part I Indicate the number of pages
on the diagram that will be occupied by the tree to which
the GROUP entry refers. The accumulated page totals are then
entere d into each GROUP entry ’s PAGE’REF item.

If the TAJ3LE’OF’CONTENTS option Is also on, then a tabl e of
contents entry is generated (by the procedure
GENERATE’CONTENTS’ENTRY) for each module referred to by a
GROU P entry. A module Is defined to be a program , procedure
declaration or close declaration. A module can be
distinguished from a stump in the GROUP table because it has
a non—blank PROC’NAME .. (Stum ps do not have entries in the
table of contents).

If the HEADING option is off , then there will be no page
numbers in the diagram. However , stum ps w i l l be numbere d
according to the order of their appearance in the diagram.
The stump numbers will be stored In the GROUP entries’
PAGE’REF items .

• Assignment of reference numbers Is performed by the Part 2
procedure COMPUTE’PAGE’NUMBERS.

After reference numbers are assigned to each entry In GROUP ,
the outputting of the design diagram begins.

74

_ _ _ _ _ _ _ _ _ _ _ _ _ _

r W ~
— —_

~~.

~ ~~JJTL~~ _-~~~ -_ ~~~
_ _.,-. —

~
— —

-- - 5 — - .- s ..- -rt *~ .’cr, .~~~~~~~~~~~ - - _ - -

Each of the FILE 3 trees is processed independently and In
the order determined by Part I (see Section 4.5. .3). The
next tree to be processed is accessed by the NEXT pointer of
the current tree’s GROUP entry (NEXT (O) accesses the
first tree). When an attempt is made to follow a zero link ,
then the tree processing operation is complete.

The processing of a FILE 3 tree begins wi th the Invocation
of the procedure ADVANCE’PAGE which sets LINE’NO (the number
of the current output line) to point at the top of the next
unused page. The new value of LINE’NO becomes the
di splacement to which all of the relative line numbers in
the FILE 3 tree are added in order to ob ta in absolute l ine
numbers.

The tree is traversed by the method described in Appendix A.
Each FILE 3 record describe s a code block having one of the
four box types described in Section 4.5.3.1. Five basic
operations are performed on each record of the tree. These
operat ions are : connect ing the code block , out puttt ing the
code block top, extract ing the input program text ,
construct ing the code block l ines and out putt ing the code
block bottom .

Connecting the code block is the operation which draws a
connecting line between the cu rrent code block and its
father. This operation is described more completely in
Sect ion 4.5.3.2.

Out putt ing the code b lock top is the operat ion of out putt ing
the top of the code block’s box on the output line
designated by the START’LINE field of the FILE 3 record.
This operation is performed by the procedure OUTPUT’BOX’.FOP.

Extracting the inpu t program text is performed by the
function EXTRACT’TEXT. The purpose of the function is to
extract the contents of FILE 2 according to the
specifications contained In FILE 4. This function is
discussed more fully In Section 4.5.3.3.

Construction of code block lines is the operation which
embeds a line of extracted input program text in the code
block’s box and outputs the resulting string on the
appropriate output line. CONSTR (JCT’LINE, the procedure
contr o l l ing this operation , Is also responsible for handling

• double spacing (if the DOUBLE’SPACE option is on) and for
Invok ing the heading outputter (OLJTPUT’HEADING) if the top
of a page is encountered (and if the HEAD ING option is in
effect).

75

— ~~
- -

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- ‘ :T-~~ ” ” ~~~~~’~~:- - - -----— --~~~-~~

-
~~~———--- — — 

- 

-~~~ —

Outputting the code block bottom is almost identical to
outputting the code block top. It Is performed by the
proc edure OUTPUT’BOX’BOTTOM. However , OUTPUT’BOX’BOlTOM also
performs some buffer optimizaLion wh ich is described In
Appendix C.

If a record having a negative H’PTR or V’PTR is found while
t rave rs in g a t ree , then that recor d Is the father of a stum p
root (see Section 4.s.2.2.3). All such records must have
stum p re fe renc e di s p lays indi cat ing the number of the page
on which the stump root’s subtree will appear (if HEADING Is
on) or the stump sequence number (otherwise).

Stum p re fe rence  d i s p l ays  are const ruc te d and out put by the
procedure DISPLAY’STUMP’REF. Basically, th i s p roce dure
draws a box to the right or under the stump root’s father
(depending upon whether H’PTR or V’PTR is negative). The
contents of the PAGE’REF item of the GROUP entry (which
points at the stump) Is then displayed in the box. If the
HEADING option is in effect , then the num ber of the page on
wh ich the stump Is referenced is stored in the FROM’PAGE
item of the GROUP entry.

4.5.3.1 Code Block Formats

There are four code block formats in the JSOD diagrams .

Code blocks whose FILE 3 records have a STMT’UNIT field
equal to SEQ or PGM’TAIL appear as rectangles

**********
* *
*** **** ***

Code blocks defined by COl-AMEI’JT’2 FILE 3 records appear as
follows when accessed by a V’PTR:

I

‘ “ COMMENT TEXT”
I

When accessed by an H’PIR, COMMENT’2 code blocks appear:

—+
‘ “COMMENT TEXT”
I

CONTROL’ I , CONTROL’2 and CONTROL’4 code blocks appear in the
f o l l ow ing manner :

**********
* *
********** -16 

- - - - - - - ~~~~~~~-~~~ - - - - 



— -~- ‘- --—- r~~~~~~~~~ - - ‘
_ — —--—---~~--- ;- - •~~~~~~~~~~~~~~~~~~~~ - ----- ----- --—.-—- --- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

CONTROL’3 code blocks have the follow ing appearance :

*

4.5.3.2 Connecting a Code BLock

The procedure CONNECT’BOXES Is responsible for drawing
connecting lines between a code block and its father (If
the code block has a father).

If the current code block has no father then no action is
taken.

If the current code block has a negative BACK’H or BACK’V
pointer , then it is a stump root and it must appear under a
stump reference display box. Such a display is constructed
by drawing a rectangular box and placing the contents of the
current GROUP entry’s PAGE’REF in the box. If the HEADING
option is in effect , then the contents of FROM’PAGE are also
di splayed in the box.

In all other cases, the current code block has a father to
which it must be connected. cONNECT’BOXES calculates the X
and V coordinates (In terms of column and line) of the end
po ints of the connect in g l ines and passes them to the
proc edure DRA V~’LINE which draws them.

4.5.3.3 Extracting the Inpu t Program Text

Each statement unit appearing in FILE 2 has a set of FILE 4
records associated with it. This set of records points to
the statement un it in FILE 2 and defines the way in which it
will appear in the diagram (see Sections 4.5.1.1 and
4.5.2. 1). The function EXTRACT’TEXT operates on FILE 2 with
the informat ion in FILE 4

If the Header record of the set contains a LINES’OIJT field
hav i ng a value of one , then the statement un i t to which i t
points w i l l appear on one l ine of the di agram and the ent i re
FILE 2 record is returned.

If LINES’OUT is greater than one , then LINES’DUT
invocations of EXTRACT’TEXT must be made. Each invocation
extracts and returns the text between the bytes indicated by
consecut ive records of the set of FILE 4 records.

/7

---5 - - - - ~~~ -- - - -

- 1J— —
_

~~_—_-.~~
__

—. — - 5 —-5,—— ,—,--- — —‘---5-
~• — —- _ - -~~~~~~~

— _
~~

—I -~~~~~~~~

4.5.4 Phase 2 Input/Output

All of the files generated by Phase 2 (FILE 3, FILE 4 and
the out put f i le , PUTOUT) are treated as direct access files.
This is necessary because of the frequent updating and
back—up required by the JSDD. Since no direct access
facilities exist for JOVIAL output files , Phase 2 uses a
double—buffering system to manage its files.

The double—buffering requires that Phase 2 maIntain two
copies of each of its files . One of these copies is flaaged
as being the m ost recent version. A block (or in the case of
PUTOUT , a collect ion) of records is kept as an in—core
bu ffer.

A l l Phase 2 f i les are access ib le only by the A CCE SS
functions (AC CESS3, ACCESS4 and ACCESS’OUT). The ACCESS
functions take one parameter —— the absolute record number
of the record to be accessed. Among other things , the
ACCESS functions read the block containing the desired
record into the buffer (if it exists and is not already in
core) and return the index into the buffer of the desired
record.

A write operation has the immediate effect of cha nging the
contents of the In—core buffer (no t of the block on disk).
Any changes made to the contents of the buf f ers cause a
writ e switch associated with the file pair to be activated.
If a call to an ACCESS function requests a record not
cu r ren t l y in cor e, then before the b lock cont ai ning the
desired record can be brought into core , the write switch
must be evaluated. If it is on , then the cur ren t bu f f e r
must be written out to the file. However , in or der to
accom p l i sh th is, all blocks in the most recent version (and
the contents of the buffer) must be transferred over to the
older version of the file. The old version is then flagged
as being the most recent version.

The transfer operations are performed by the procedures
TRANSFER’;IRITE’3, TRANSFER’~iPITE’4 and TRANSFER’V1RITE’OUT.

Appendix C describes current and possible future
optimIzations of the doubl e bu ffering system .

4.6 Phase 2 i-~odules , Var iab les and Cons tants
• This section contains a list of DUG variables and

proc edures. Each item in the list Is accompanied by a brief
description of Its function and/or meaninci. Following the
l ist of procedures are the three compools OPT and Di bUU
which were used to produce the design diagram of the DUG.
(SPOOL is also used by the DUG. See Section 4.1.5).

- —


~~~~~

•• 

~~~~~~~ 
—

~~~ 

_
~- — -

~ 
‘
~~~

-
~~

~~~~

“ 
~~~~

— -——
~~~~~~~~~~ ~~~

-
~~~

- —--—~~ ,. T ’ ~’— ~~~~~~~~~~~~ ~~~~~~~~-5.— - - - —------—--••-••~~-- -.‘--• - —___- - - ~~~ - - - _~,__•_

The DDG global declarations are listed In Section 4.6.1.
Procedures (and their local variables) are listed in Section
4.6.2. UPT and DEBUG are listed in Section 4.6.3.

In Sections 4.6.1 and 4.6.2 the following DEFINE DIRE CTI VES
are in e f f e c t :

def ine character “h (50” $
define fI’blksiz “713” $
define f2’blksiz “12-” $
define f3’blkslz “22” $
define f4’blksiz “lOb” $
d ef ine f a l s e “0-” $
define integer “1 36 s” $
define out’buf’s i ze “1000” $
de f i n e t ru e “1” $

4.6.1 DOG Globa l Declarations

Th is sect ion contaIns a l ist of a l l g lo bal va r ia b les
declared in the DOG. In the descriptions following the
declarations , PTI indicates that the declared variable Is
used only in Part I of the DUG and PT2 indicates that It is
used only in Part 2. All variables that are designated as
neither P11 or P12 can be assumed to be used in both DDG
parts.

Item bottom ’lIne Integer $ “P12 stores STOP’LINE of CUR’REC
‘I

Item hlock’delim Integer p 5 $ “ a STMT’TYPE constant -“

item hox’tai ,l integer p 2$ “length of CDNTROL’3 tail

Item comment’I integer p 2 $ “ a STMT’TYPE constant-”

item couiiment’2 Integer p 3 $ “ a STMT’TYPE constant-”

“CcJ~ifROL’I thru CONTRUL’4 are STMT’TYPE constants for
-“

“control phrases.”

Item control’I integer p t3 $ “PROGRAM , PROC or CLOSE head”

iter .i control’2 integer p 9 $ “IF, FOR or DO c lause ”

item control’3 integer p 10 $ “IFEITH clause or CASE HEAD”

item control’4 integer p 11 $ “ORIF clause or INSTANCE “

i tem cur ’grou p integer p 0 $ “index Into group of current
t r ee”

-
I ~

- -5- -- - - - - -5~~~~~~~~~ ~-——~~~~~~~~~ ---

r ~

- -
- - ~~~~~~~~~~~~~~~~~~ ~~~ -- - •- -—----- — - —— - - -—

i tem cur ’rec Integer p 0 $ “current FILE 3 record -“

I tem de l Im ’comment integer p 4 $ “ STMT’TYPE constant “
item disp integer $ “P12 displacement for relative line
numbe r i n g”

item display ’lines integer p 3 $ “lines spanned by a stump
ref box”

item dlsplay’width integer p 6 $“wl dth of stump ref box”

item end’scope integer p I $“STMT’TYPE constant ‘-‘

I tem eof i,le b p 0 $“FILt 1 end of file flag ”

item extra’block b p false $ “flags extra P1JT(JUT file
block”

“ F(’BUF Is the FILE I buffer see Section 4.4 “
table fI’buf r fl’hlkslz s n $
beg I n
Item fieldi integer $
item fIeld2 Integer $
item field3 integer $
Item fIeld4 integer $
end

“ F2’t5UF Is the FILE 2 buffer see Sect ion 4.4-”

table f2’huf r f2’blksiz s n $
beg in
Item f2’line character $
end

Item f3’avaIl Integer p I $ “the next empty FILE 3 record
‘I

“F3’BUF is the FILE 3 buffer see Section 4.5.1 “

table f3’huf r f3’blkslz s n $
beg in
Item f4’hecjln Integer $
item f4’end integer $
item stmt’un it integer $
i t e m st a r t’ col i n t e g e r $
item block’width integer $
item mldp t integer $
Item stop’col integer $
item start’line Integer $
item lines integer $
item stop ’line inteqer $

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ J

—

item h’ptr Integer $
• item v’ptr integer $

Item back’h integer $
item back’v Integer $
end

“F4’BUF is the FILE 4 buffer : see Section 4.5.1 -“

-
- tabl e f4’buf r f4’blksiz s n $

begin
i t e m f2 ’p t r in teger $
i tem l ln es’out inte ger $
I tem max ’line ’lngth integer $
item f2’rec integer $
item f2’byte integer $

overlay the disjoint fields ”
overl ay lInes ’out = f2’rec $
overlay inax ’l ine ’lngth = f2’byte $
end

“ GROUP is the FILE 3 tree pointer. See Section 4.5.1 “
table group v 500 p n $
neqin
iten f3’rec integer $
item froc~i’page integer $
Item ne xt Integer $
i t e m pacje’ref i n t e g e r $
item proc’nam e character $
end

item f2’recs integer $ “no. of FILL 2 recs spanned by a
stm t unit”

item fI’blk integer p —l $ “num ber of FILE I b lock in core
I’

item f2’blk integer p —I $ “num ber of FILE 2 block in core
“

i t em f3 ’b lk in t ege r p — l $ “numb-er of FILE 3 block in
core”

1cei~ f4’hlk integer p —I $ “number of FILE 4 block In core
‘‘

it ’-~- -~ f3’euipty integer p 0 $ “next empty FILE 3 block “

i t e f 4 ’ e p ty Integer p 0 $ “next empty FILE 4 block “

L’- ‘4 ’- ~ t - ~ r - t integer $ “PT2 stores F4’BEGIN of CUWREC “

- - j


~~~~~~~~~~~
- ----—--

~
--—-- -- --- -5 — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _-. ~~~~~~~~~~~~~~~~~~ ~_~~~~~~~~~~~~~ c—s -. s . .~~ —

item f4’stop Integer $ -“PT2 stores F4’END of CUR’REC “

file fu el b 1 0000 r 313 v (a) v (b) v (c) v (d) v (eofl) II $
“FILE I “

file file2 h 1 0000 v 1 806 13 $ “FILE 2”

file file3’l b 1 0000 v 309 14 $ -‘- Version I FILE 3-”

file file3’2 b 1 0000 v 309 18 $ -“Version 2 FILE 3”

file file4’l b 1 0000 r 316 15 $ “Version I FILE 4”

file file4’2 b 1 0000 r 316 19 $ “ VersIon 2 FILE 4”

item file2’index integer $ “PTI index of stmt unit in FILE
• 2 ”

-“FILE3-’INCLUSION is a flag indicating whether a FILE 3 rec
should be created for the current FILE I rec (PT1)-”

item flle3’inclusion b $

file flnal’out h 20000 V 150 17  $ “ output file-”

Item first-’4 integer $ “ PTI index of 1st FILE 4 rec of
set “

item first’invoc b. p true $ “flags first call to
EXTRACT’TEXT”

Item group-’avall integer p 1 $ -“index of next empty space
In group -“

Item grou p’max integer p 499 $ -“ the size of GROUP -“

array group’stack 1 00 integer $“PT2 for storage of tree
hi story”

Item headroom integer p 4 $ “lines spanned by page
heading”

item h’father Integer $ “PT2 stores BACK’V of CUR’REC “

Item h-’son Integer $ -“PT2 stores H’PTR of CUR’REC -“

item h’space ’I integer p 4 $ -‘-‘ horizontal spacing constant
I,

item h’space ’2 integer p 2 $ “ horizontal spacing constant
I,

82

- - -  - - - - ~~ - - - -



_ _ _ _ _ _ _  ---~~~~ - - -~~~~~~~~~~~ - - -  - - -

item last’4 integer p -I $ ‘~ PTl index of last FILE4 rec of
— 

a set”

item last’f I integer p — l $ “PTI index of last FILE I rec
read”

“LAST’LZNE is used in Part I to store the last relative
line number in the current tree . In Part 2 it is the
absolute last line which has been output. “

Item lact’line Integer $

item last’proc integer p — l $ “PTI index in Gf?OUP of the
last  proc “

item last’stump integer p 0 $ -‘-‘PTI Index In GROUP of the
-last s tum p “

array layout’stack 100 integer $ “ stores history of
LAST’LINE”

item layout’stack’max integer p 99 $ “ca pac i ty of
LA YO UT’ S TACK “

item layout’stack’top integer p 0 $ “ current top of
LA YO UT-’ S TACK “

item left’col integer $ “PT2 START’COL of CUR’REC”

item lIne-’no integer $ “PT2 the number of the line be ing
output”

i tem max ’foutput integer p — 1 $ “PT2 index of last PLJTOUT
block on’ disk”

item message character $ “ stores e rror and debug
mess ages ”

item midpoint integer $ “stores MIOPT of CUR’REC-”

“NAME’BYTE Is the byte of header at which the module name
prints ”

Item name’byte integer $

I tem new ’file3 b p 0 $ “flags FILE3’I or FILE3’2 as most
recent ”

it em new ’file4 b p 0 $ -“PTl flags FILE4’ l or FILE4’2 as
most recent”

i tem new ’out b p 0 $“PT2 flags PUTOUT’I or PUTOUT’2 as most
recent”

83

-5 -~~~~~~~~~------ - - - 4



~~~ -
--

~~~~~
“ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~
-——--

~~-
-_ - — -

i tem new ’text character $ “PT2 stores text extracted from
Fl LE2”

Item null’scope b p 0 S-”PTI flags control phrase’s nu l l
scope”

item out’blk Integer p —l $ -“PT2 PUTOUT block in core -“

-“OUT’LINE Is PUTOUT’s bu f fe r “

array out’line out’buf’slze character $

item page’byte integer $“PT2 header byte at which pag e’no
wi 11 pr in t-”

item page’no integer $ -“PT2 number of current page “

Item past’mid b $ “ PT2 flag controls printing of pointed
boxes-”

I tem pgm’tail integer p 6 $ “STMT’TYPE constant-”

Item proc ’flag b p 0 $ “PTl flag on if creating a proc
tree-”

Item proc’root integer p 0 $ -“PTl flags GROUP item as a
proc head”

array proc’stack 5 Integer $ -“PTl stores proc hIstory-”

i tem proc’stack’max Integer p 4 $ -“ PTI PROC’STACK
capacI ty”

item proc’stack’top integer p 0 $ “ PT I current top of

PROC’ STACK-”

Item readsw b p false $ “a read—only switch for FILE4-”

item proc’count Integer p 0 $-“PT2 the number of procs in
the program “

file putout’l h 20000 v 150 16 $ -“Version I trnp output-”

file putout’2 h 20000 v 150 20 $ “Version 2 tmp output-”

i tem recs ’In’blkI integer $-“number of records in the FILEt
bloc k-”

i tem recs ’ln’blk2 integer $ “number of recs in the FILE2
block”

84

• -

— --5-
~~~~~~~~~~~~ •—•---------- — _______________________________________

item recs’in’blk3 integer p 0 S-”number of recs In FILE3
block-”

I tem recs ’in’blK4 integer p 0 $ -“number of recs In FILE4
block”

item rlght’col integer $ “PT2 stores STOP’COL of CUR’REC”

item right’pos integer $“PT2 monitors printing of pointed
boxes-”

item seq Integer p 7 $ ‘-‘STMT’TYPE constant “

item skip b $ “PT2 controls double spacing-”

item single’space b $ “ PT2 always set to NOT
DOUBLE-’SPACE”

I tem son’top i n t e g e r  $ “PT2 START’LINE of CUR’REC’s V’SON-”

item stmt’token integer $-“ the type of a statement unit”

item stmnt’type integer $ “a statement unit type-”

item stmt’lng th integer $ -“PTI stores the length of a stmt
unit-”

item stump’found b p 0 $ -“P11 flag set If a stump has been
detected ”

i tem stum p’root integer p I $ -“P11 flags GROUP entry as
stump head”

Item tem pc character $ -“ temp used for characters”

Item tem pi integer $ -“ temp for integers”

Item top’line Integer $ “PT2 START’LINE of CUR’REC-”

item t’mess character ‘-‘temp used for debug messages -“ $

array t raverse ’stack 200 Integer $ -“stack’ for tree
traversal” 

—

Item traverse’top integer $-“ current top of
TRAVERSE ‘STACK-”

item v’father Integer $ “ PT2 BACK’V of CUR’REC-’~

item v’son integer $ -“PT2 V’PTR of CUR’REC-”

I tem v’space integer p 3 $ “vertical spacing constant”

85 

— - - ---5— -  —4



_ _ _ _ _

~~~ - -

Item width integer $ -“PTI stores width of current text
l ine or box”

Item write3 b $ “ FILE 3’s write switch”

I tem wri te4 b $ “FILE 4’s w r i t e swI t ch”

4.6.2 DOG PROCEDURES

The following is the list of procedures declared in the DOG.
In addition to these procedures , the string package is also
used by the DOG (see Section 4.1).

proc access l (rec’no) $

“The function ACCESS I provides the interface for FILE I.
Its parameter is an absolute record number. ACCESS I reads
the appropriate block of FILE I records Into core and
returns the index into FILE l’s bu ffer of the desired
record.-”

Item access i integer $ “index into FI’BUF of record”

Item block’no integer $ -“ FILE t block in which record
resIde s ”

Item rec-’no integer $ “absolute number of the record”

proc access2 (rec ’no) $

“ACCESS2 accepts an absolute record number and makes sure
that the FILE2 block containing that record is in core.
ACCESS2 returns the index into F2’BUF of the record. -“

item access2 integer $ “the index into F2’BUF of the
record”

item block’no integer $ “the FILE2 block containing the
record”

item rec’no Integer $-‘-‘the absolute number of the file2
record”

proc access3 (rec ’no) $

86

-5 -
- ---~~~~~~~~~~~~ —-

-— - - - - - ~~~ - — ~~— . ._ _ .- _ -5------- - —- - -•--5-~~•-~ • —-5 —.- — —,-- ----‘—— - --5-—-

“ The function ACCESS3 is the interface for FILE3. Its
parameter is the absolute record number of a FILE 3 record.
ACCE SS3 determines if the block containing the record is in
core. If It is , then , the index into the buffer of the
record Is returned. If the block is exists but Is not In
core , then ~1RITE3 is examined. If V~RITE3 is on (equa l to I)
then , the buffer must be written to disk (by
TRANSFER’WRITE3). ACCESS3 reads the desired block Into the
buffer and returns the index Into the buffer of the record.
If the block does not exist then ACCESS3 returns the Index
into the buffer of the record as if the block did exist , and
sets RECS’IN’BLK3 to that value.-”

i-tern access3 integer $ “ the index Into F3’BUF of the
record”

item - block’no Integer $ -“the FILE3 block contain ing the
record”

i tem rec ’no Integer $ -“the absolute number of the
record ”

proc access4 (rec’no) $

“ The function A CCESS4 is the FILE 4 Interface. It is the
same as ACCESS3 except that it doesn’t call TRANSFER’~RITE4
if READSV4 Is on. “

item access4 integer $ -“ the index Into F4’I3UF of the
record”

item block’no integer $ “ the FILE4 block containing the
record”

i tem rec ’no Integer $ -“the absolute number of the record-”

proc access’out (rec ’no) $

-“ The function ACCESS’OUT is the interface for the PUTOUT -

files. Its purpose and operation are analagous to those of
access3. ‘-‘

1 em access’out integer S” index into LINES’OUT of the
record”

Item block’no integer $-“the ‘block’ containing the
record”

87

_ _ _ _ _ _ _ _ _
~~~~~~~ - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-  - - -



_______________ - - - — - 
_______ ~~ ~-~•

i tem r ec’no in te ger s ” abso lu te  num ber of the recor d in
putout”

proc advance’page $

“ The procedure ADVANCE’PAGE sets LIt-4E’NO to the number of
the top line of the next empty page . LINE’NO then -becomes
the d isp lacement  used for ca lcu la t ing absolute l ine numbers
from relat ive ones. “

item line Integer $ “ displacement of LINE’NO on current
pr~ge”

Item page integer $ “a dumm y va r ia ble  used in  ca l l ing
REMQUO”

proc box’map (stmt’type) $

“The function BOX’MAP accepts STMT’IOKENs used by Phase I
and maps them onto statement types used by Phase2.”

item box’map integer $ “the phase2 statement type”

item stmt’typ e integer $ “the Input parameter”

proc hyte’em$

“The procedure  EJ YTE ’E M rea ds the di agr am f rom either
PUTOUT I or PUTOUT 2, t runcates It and wr i tes it to
FINAL’ OUT. “

i tem l i ne’count integer $“number of lines in this output
group”

item page integer $ “dummy used In calling REMOUO”

item temph l characters “ a temporary character variable ”
proc c lose ’rec (t ermn ’rec ) $

“ The procedure CLOSE’REC assigns the LINES and
BLOCK’~ IDTH fields of FILE 3 records. It calls PLACE , which
completes the Part I processing of the FILE 3 record . -“

item stmt’typ e integer $ “ the Part 2 stmt type of the
record ”

i tem term ’rec integer $“recor d num ber of the record be ing
closed”

i-

i

—— - - 5 — —  — - - - - — - — -~~~~ - -



H 

-- - - - - — - — -— —

item tempil Integer $ “temporary integer -“

item templ2 integer $ “temporary integer “

p roc com pute’page’numbers $

-“The procedure CUMPUTE’PAGE’NUMBEkS assigns reference
numbers to stumps and if HEADING and TABLE’OF’CONTENTS are
on , calls GENERATE’HEADER’ENTRY to enter a module name Into
the table of contents. “

i t em abs’page’no integer $“num ber of page on wh ich modules
start-”

Item contents’pages Integer $ “pages spanned by contents
table”

i tem cum’pages integer $ “cumulative p~~ e count”

i tem stum p’count integer p 0 $ “cumulat ive stum p count “

proc connect’boxes $

“ The p roce dure CONN~CT’8OXES determines how to connect acode block to its father (if it has one). If the code block
is a s tump then CONNECT ’BOXES draws the  s tump r e f e rence
di splay box for the stump. -“

i tem d Is p lay ’top integer $ “ top line of the display box-”

Item father integer $ “record number of code block’s
father ”

i tem father ’bottom integer $ “father’s bottom line-”

item father’mId integer $ “father’s midpoint”

i tem father ’top integer $ “father’s top l ine”

i tem f a t h e r ’type integer $ “father’s ty pe “

item horiz b $ “ type of connection. horiz or vert-”

item l ine integer $ “LINE’NO’s di sp lacement on current
page”

Item lngth integer $ “use d to stor e leng th of str ings”

Item page integer $ “dummy used to call REMQUO “

89

_ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



_________________ -5 -.. -- - --5- --5— — —
~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~ 

-
~ r’~~~~~ — — - -

-5 - - - —~~~~~~~~~ - ~~~~~~~~~~~~~~ - __ J _ ~~~ -5•~~~_~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-

~~~~~~~~~~

- - item xl integer $ “x coord of connecting line ’s start”

item x2 Integer $ “ x coor d of connect ing l ine’s end”

item yl integer $ “ y coo rd of  co nnect ing l ine’s s tart  “

Item y2 integer $ “ y coord of connecting line’s end”

proc construct’l ine $

“ The procedure CONSTRUCT’LINE embeds the line of input
text provided by the procedure EXTRACT’TEXT in the sides of
the box in which it will appear. CONSTRUCT’LINE also is
responsibl e for outputting blank text lInes if the
DOUBLE’SPACE option is in effect . Double spacing is handled
by Iterat ing through the routine INC times where INC is set
accor d in g to the value of SKIP , the b lank l ine  f l a g . “

item inc integer $ “the uppper bound for the output loop-”

item line integer $ “LINE’NO’s di sp lac ement on current
page ”

item lngth Integer $ “use d to store s tr ing lengths ”

item page integer $ -“dummy variable used for call to
REM Q UO ”

item real’start integer $“stores the column in whi ch text
s tar t s ”

proc cont inue’box (cont’rec) $

“The procedure CONTIf4UE’130X appends compatible statement
units to the current FILE 3 record. A compatible statement
unit is one which can appear In the same code block with
the statement un its which have already been placed there. “

Item cont’rec integer $ “ rec no. of continued block. “

proc create ’fIle4’recs $

-“ The procedure CkEATt~’FILE4’RECS creates a set of fi le 4
recs for a statement un it If It Is approprate to do so. The
primary function of C~?EATE’FILE4’RECS Is to break up
statement un its (in FILE 2) so that they may be displayed in
accordance wi th the value of ST’MAX. The procedure attempts
to break up statement units at the space closest to ST’MAX.

90

—--5——---—-5- - - - — - --- -- - -- -----—--5 — -

~

- - -- ---- —---- --- - - - -5 --5- -



~~~
— -

~~~
---- —- - 

~~~~~~~ ~~~~~ ‘‘ ‘ ‘  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ —‘IIpI~~

If there Is no blank , then the break is made at S1’MAX. A
set of FILE 4 records consists of a Header record and any
number (i n c l u d i n g 0) L ine Break record s (see JSDD Program
Structure Section 4.5.1). “

Item bytes integer $ “ no. of bytes proccessed”

Item cur’pos Integer $ “ current pos i t ion i n l in e “

item done b $ “ termination flag “

item fl’rec Integer $ “ the current FILE I record”

item last’byte integer $ -“ byte pos of last break -“

i tem las~’rec integer $ -“ rec of las t break “

item stmt’type integer $ “ Part 2 statement type of the
re C”

I t e m temp’byte integer $ “use d to st ore th e break by te”

i tem temp’rec Integer $ ‘‘ used to store the break record-”

proc create’h’ptr’rec (father=son) $

‘-‘The procedure CREATE’H’PTR’REC sets up pointers which
have the effect of inserting an H’SON Into the FILE 3
tree.-”

Item father integer $ “ the father of the new record “

Item son integer $ “ the record number of the new record”

proc create ’v’ptr’rec (father=son) $

“ The procedure CREATE’V’PTR’REC is the same as
CREATE’H’PTR’REC exce pt that it creates a V-’SON. -“

Item father Integer $ “record number of the new rec’s
f a t h e r ”

item son integer $ “ recor d number of new F I L E 3 rec “

proc dashes (col ,ln gth,l ine ,outpt) $

“ The proce dure DASHES ou tputs a s t r ing of dashes of
length LI4GTH, start ing on column COL of PUTOUT record LINE
or TEMP L (d e p e n d i n g on the va lue of OUTPT) . “

9 1

- - - - - ---5—- ---- -- —- - —----- -- -5— ---5-- -.— -5

_JI-
~~

—

~~

—-5— --5 — -—-

~~~~~~~

--- 
~~~~~ —-..-5-,—---- -—

,~
- -

‘

--5-
-- - - - --5w

_ _ _ _

_ _

item col integer $ “ the column on which dashes start “
item line integer $ “PUTOUT record on which dashes

a ppear ”

item lngth integer $ “ length of dash string to be
output”

item dash h 132 p
132h (

—) $

item outpt b $ “ output to TEMP or OUT’LINE “

proc d i s p lay’stump’ref (hor iz) $

“The procedure DISPLAY-’STUMP’REF creates and outputs a
stump reference display box either hori zontally or
vert ically from the current diagram code block. The box
contains the reference number of the stump which is
obtained from the PAGE’I~EF Item of the stum p’s GROUP entry.

Item bottom integer $ “ the bottom line of the display
box ‘-‘

item display integer $ “line on which reference appears-”

I t em hor iz b $ “type of display. horlz or vert.”

Item index integer $ “ the index of the stump’s GROUP
entry”

item left’start integer $ “the starting column of the
box”

item lngth integer $ “ us ed to store s t r ing len gths”

item line integer $ “ displacement of lines on current
page”

item page integer $ “ dumm y variable for call to I-?EMQUO “
item top integer $ “the top line of box”

9d ~

& -

L - - -~~~ -~~~~~~~~~~- —-~~~~~~~ - - - — --- - - -~~~~~~~~~ - - - -- - ~~~~~~ --- -— -- -

-
~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ -9 ~~ ~~~~~~~~~~ 

— - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~— -— - -~~- - - ~.- - --5— — -

proc dots (col ,ln gth ,line) $

“ The procedure DOTS outputs a string of LNGTH dots
starting at column CDL of the LINE th record of PUTOUT. “

item col Integer $ “ the starting column “

item line integer $ “ the number of the putout record-”

item lngth integer $ “ num ber of dots to be output “

item dot h 132 p
132h ( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. . ... .. .. . . .. . . ~~~~~~~~~~ ~~~ • ~~~~~~~~ .. .. •... •. .. S ........ .... .....) $

proc d raw ’line (frorn ’x,from’y , to’x,to’y) $

‘-‘ The procedure DRAN’LINE draws a line from the point
-hav ing x and y coordinates (in terms of column and record )
FIIOM’X , FROM’Y to the point TO’X, TO-’Y. “

i tem f r o m’x integer $ “star ting x coord”

i tem from’y inte ger $ “ st art ing y coo r d “

item line integer $ “ use d to stor e page di sp lacement “

item page Integer $ “dummy used in call to REMQUO”

I t e m  to’x integer $ “ ending x coord “

i tem to’y Integer $ “ ending y coord “

i tem two ’llnes b S”on when 2 l ines  nee ded to connect
p o i n t s ”

proc extract’nam e () $

“ The function EXTRACT’NAME extracts and returns the name
of a module head. “

item done b $ “ termination flag “

item extract’name character $ “ re turns  t he module name ”

item Index integer $ “index into text string -“

item Indexl integer $ “ Index into text string ”

93



_____________ — - - ~~~~~~~~~ -~ --.~~— ~~~~—‘-~~-~~~~~ ~~~~~~~ — - - 
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
~~~~~

,

I t e m  index ’f2  i n t e g e r  $ “ FILE 2 record number ”

i t em  l n g t h  i n t eg e r  $ “ use d to s tore len gt hs of  s t r ings”

i tem source ’line character $ “ stores FILE 2 record text”

proc extract’text (f4’ptr ) $

“ The function EXT!-~ACT’TEXT extr acts FILE 2 text In
accordance with the line break information contained in the
set of FILE 4 records which correspond to the statement
un it.

item byte’ptr Integer $ “last byte of text to be
returned”

item extract’text character $ “conta ins text to be
returned”

item f4’ptr integer $ “ current FILE 4 record -“

item fIeld l integer $ “ stores F2’PT~ of  curr ent F I L E  4
rec ”

item field2 integer $ “s tores  LINES’DUT or F2’~ EC of  rec ”

item field3 Integer $“stores MAX’LINE’LNGTh or F2’BYFE of
rec ”
“ L1NE’PTt-? is the FILE 2 record which contains the last

byte to be returned”

I t em l i ne’ptr integer $

i ter~ lnCth integer $ “stores s t r ing l eng ths “

i t e m  n e x t ’f2  In t ege r  $ “number  of nex t  F I L E  2 rec ”

item next’f4 integer $ “num ber of next FILE 4 rec”

item text’l ine character $ “temporary string storage”

proc gen era te ’con ten t s’en try  S

“ The procedure GENERATE’CON TENTS’ENTPY outputs a table of
contents entry for the current module. It finds the starting
page of the m odule in PA~JE’~EF.”



7
AD—A052 731 CHARLES STARK DRAPER LAB INC CAMBR 101€ MA F~ S V2 ‘N

JOVIAL STRUCTURED 0€SIIIW DIAflAS4CR (JSOO). Vol.1st III. P*OflAM ctcwI ‘I

FEB 76 0 0000ARD. N WH ITW ORTH, C STROVIMI F30602—76—C—oIog
~ CLASSIF lED R SLZO VOt.. 3 PT I RAOC—tR— 7l—~—VOt, —3—fl—t Mt.

2~~2
73’

U

u
I

I

a



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- - -  -‘---- —-. — - --—- —~-.-,.--—-,- —

item line integer $ “ LINE’ND’s displacement on current
page”

i tem lngth integer $ “ stores s t r i ng lengths”

item page integer $ “ dummy used in calling I~EMQUO”

proc generate’contents ’header $

“The procedure GENERATE’CONTENTS’HEADER outputs the page
heading for the table of contents. “

item conten ts ’header charac te r $ “the table of contents
t i t le”

item ingth integer $ “ stores string lengths”

proc get’fI’rec $

“The procedure OET’Fl’l?EC tries to read the next i- ILt I
record. If an end of file is encountered , i t sets EO~-ILE toTRUE.

item fI’ptr integer $ “ the number of the k-ILE I record “

proc iformat (num) $

“ The function IFORMAT accepts an integer , and returns a
character str ing (in converted form) representing the
i n t e g e r . ”

i tem num in teger $ “ the integer to be converted”

item iformat character $ “ the string to be returned”

i t em hO h 6 $ “ a t empora ry for E~1CODE”

proc init’block’constants $

“The procedure INIT’BLOCK’CONSTANTS is called by Part 2
to initiali ze the variables which will be constant
throughout the creation of the code block. “

item index Integer $ “index into f3’bu f of the current
record”

95

~

- .
~~

-
~~~~

- - - -



—

r

proc Initialize $

“ The procedure INITIALIZE sets up the Initial value s for
DOG execution. “

proc inltiate’record (init’rec) $

“ The procedure INITI ATE’REC sets starting values in a
newl y created FILE 3 record. “

item init’rec integer $ “ rec no. of block being
Initiated. “

proc insert (group’type,f3’index) $

“ The procedure INSERT links an entry into the GROUP
tabl e for a tree which is being inititated.”

item f3’index integer $ “index of FILE 3 record being
inserted”

item group’type integer $ “type is module head or stump
head”

proc legal’stump (stmt’type) $

• “ The function LEGAL’STUMP accepts a code block type as
inpu t and outputs a I if the code block is a legal stump
root. Otherwise , it returns a 0. “

item legal’stump b $ “ holds the return value”

item stmt’type integer $ “the Input code block type”

proc max (intl ,int2) $

“ The function MAX returns the larger of the two values
passed to It. “

item Intl integer $ “input parameter ”

item int2 Integer $ “input parameter ”

Item max Integer $ “ return value”

96

A



F ~~~~

proc mm (Intl ,Int2) $

“ The function MIN returns the lesser of the two values
passed to it. “

Item intl integer $ “input parameter ”

item int2 integer $ “input parameter”

item mm integer $ “the return value”

proc output’box’bottom $

“The procedure OUTPUT’BOX’~OTTOM outputs the bottom of
the code block. It also performs some double buffering
optimization. “

item quol integer $ “the page on which the box bottom
appears”

item quo2 integer S”the page on which V’SON’s box top
appears”

i tem remi integer $ “duri~1y used in calling REMQUO”

Item rem2 integer $ “ dumm y used in calling REMOUO”

iterLl xl integer $ “col umn of connecting l i ne”

item yl integer $ “start line of connector”

item y2 integer $ “ end line of connector”

proc output’box’top $

“The procedure OUTPUT’bOX’TOP outputs the top line of the
code block.”

proc output’header (page ’top) $

The procedure DUTPUT’HEADER outputs the page heading
startIng on the line passed to it. “

i t em lngth  In t ege r  $ “ stores string lengths”

item page’top integer $ “ the line on which the heading
starts”

item temp ’line character $ “ a tmp for character strings”
97

~~~~~~~~~~~~~~~~~~~~~~


r— ~
•— —••-—-.———-— •-‘ -——— —-—•—--•-----——•— -•-——---• —--~~-. — -••—~~.-- -•—• ••-- —

proc output’title’page $

“ The procedure OUTPUT ’TITLE ’PAG E ou tpu ts the t i t l e page
t ~ of the diagram . “

item line integer $ “displacement on the current page”

i t em lngth in teger $ “ stores stri ng lengths “

i t e m page i n t ege r $ “dummy used in c a l l i n g REM QU O”

i t em s tar t ’t i tle in t ege r $ “page l i n e on w h i c h t i t l e
starts”

i t em temp ’l ine charac ter $ “ a character temp”

item title ’index integer $ “ the index in to the t i t l e
array”

i tem t i t l e’pages in t ege r $ “number of pages spanned by
t i t l e s”

proc part2 $

“ The procedure PART2 is the driver routine for Part 2 of
the DDG. “

i tem lng th in t ege r $ “ stores s t r i ng lengths ”

item t~npi l i n teger $ “ an in teger temp ”

item tmp i2 in teger $ “ an integer temp ”

proc part2’init $

“ The procedure PA R T2 ’IN I T pe r fo rms se t—up t a sks for Part
2 execu t ion . “

i t em ln gth in teger $ “ stores stri ng lengths”

proc ph2err (error ’iness) $

“ The procedure PH2ERR issues error messages and stops
execution of the DDG. “

item error’mess character $ “ the error message”

9 b

- ~~~


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~ ~~~~~~~~~~~~~~~~~~ ‘ ~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ - — ~— -- ——

proc place (new ’box) $

“ The procedure PLACE places the current code block on
the design diagram . It also performs stump detection . “

item bottom integer $ “page on which the box bottom
• appears”

i t em en t r ance i n t ege r $“ v e r t i c al or h o r i z o n t a l en t ry in to
block”

i t em f a t h e r ’hottom in t ege r $ “bottom l i n e of f a t h e r code
block”

item father ’left integer $ “father’s starting column ”

i t e m f a t h e r ’r ight in teger $ “ father’s ending column ”

item father integer $ “father’s FILE3 record numbe r”

item father ’type Integer $ “father code block’s type”

i t em hor iz i n t ege r p 0 $ “ constant indicating horiz
entry”

i tem mid in teger $ “ page on wh ich block ’s m i d p o i n t
appears”

item new ’box integer $ “new f3 rec describing latest box

item page’spans integer $ “number of pages spanned by
block”

I tem rern l i n t eger $ “ page displacement ”

i t em rem2 i n t ege r $ “page d i s pl a c e m e n t ”

item rem3 In t e g e r $ “ page displacement”

item stint’typ e integer $ “type of current FILE3 rec”

i t em s tum p’ref’bo ttorn integer $ “bottom of stump ref
d i s p l a y ”

item top in t ege r $ “page on wh ich top of b lock appears ”

i tem ve r t i n t e g e r p 1 $ “constant i n d i c a t i n g v e r t i c a l
entry ”

w —•-• • — — -
~

—
~
-—

~
—•‘---- -

proc pop’layout’info $

“ The procedure POP’LAYOUT’INFO pops the top element of
LAYOUT’STACK into LAST’LINE. “

proc pop’proc’stack (pop’rec) $

“ The procedure PUP’REC pops the top element of PROC’STACK
onto POP’REC. “

i t em pop’rec integer $ “output parameter ”

• proc push”layout’info $
“ The procedure PUSH’LAYDUT’INFO pushes the value of

• LAST’LIi’JE onto the top of LAYOUT’STACK . “

proc push’proc’stack (push’rec) $

“ The procedure PUSH’PROC’STAC K pushes the number of the
cu rrent FILE 3 record onto the PROC’STACK. “

item push’rec integer $ “ the number of the record”

proc resolve’stump (stuuip ’rec) $

“ The procedure WESOLVE’STUMP finds the root of a stump
and invokes PLACE for each record currently hanging off the
stum p root. “

item display’room b $ “enough room for stump ref display

item done b $ “completion flag”

i t em f a t h e r in t ege r $ “record number of f a t h e r ”

i t e m hor iz in t ege r p 0 $ “ cons tan t i n d ic a t i n g hor iz
entry ”

i t e m index i n t ege r $ “used as an index in to the GRO U I ’
tabi e”

it em in i t ’ stump i n t e g e r S” record number of the rec caus ing
s tump ”

item l a s t’index i n t e g e r $ “stores p rev iou s index i n t o
GROUP”

I 00

— - -

item old’index integer $ “previous GROUP index”

i tem s tump ’rec in teger $ “ current FILE3 record-”

I t em sub’stump In t ege r $ “record number of sub s tump ”

item type integer p 0 $ “ horiz—vert flag”

item vert integer p I $ “ constant indicating vert entry ”

*

proc stars (col,lngth ,line) $

“ The procedure STARS outputs a string of LNGTH stars
s t a r t i n g on column COL of the L I N E th PUTOUT record. “

i t e m cal in teger $ “ the column in w h i c h s tars s tar t ”

Item l i n e in teger $ “the PUTOUT record in which stars
appear ”

item lng th in teger $ “number of s tars ou tpu t”

Item star h 132 p
I 32h(** ***
*******k** **** **) $

proc transfer’write3 $

“ The procedure TI1Ai’~SFER’~RITE3 transfers the contents of
the most recen t ver s ion of F I L E 3 and the cur ren t b u f f e r
contents i n t o the spare vers ion of F ILE 3.”

“T1~P’~ UF is a temp b u f f e r for F I L E 3”
tab le tmp ’buf r f3 ’b lk si z s n $
begin
iten anti integer $
i t e m ent2 i n t ege r $
i tem 3nt3 I n t e g e r $
i t em ent4 inteCer $
i t em e n t b i n t e a e r $
i t e m entO i n te g e r $
i t em ent7 i n t eg e r $
i t e m ent8 i n t ege r $ - -

item ent integer $
i t em e n t l O i n t e g e r $
i t e m e n t l i i n t e g e r $

R,l

~~~~~~~~~~~~~~~~~~~~~~~ --~~..~~~~~~~~~~~~~ -- •~~~~~~~~•- 



I — ,  —
~ 

•- — - -— - - - 
~~~~~~~~~ ~~~~~

,—
~~~~~

—-—— 
- s-*~~~~~~~~~

____ ,___ 
~~~~~~~~~ •—r—~~=~

_
~ -- — — --•- •,-- — —

Item entl2 integer $
• i t em e n t l 3 in teger $

item entl4 integer $
end

item tmpi Integer $ “ temp store for RECS’IN’BLK3-”

proc transfer’write4 $

“Same as TRANSFER’~RITE3 , only It operates on FILE 4. “

“ TMP’~3UF is the temp FILE 4 buffer”table tmp ’huf r f4’blksiz s n $
• begin

item ent l integer $
item ent2 integer $
item ent3 integer $
end

i t em t inpi in teger $ “temp store for RE C S ’IN ’BLK4 ”

proc transfer’write’out $

“ Same as TRANSFER’~ RITE3, except TRANSFER’v~RITE’OUToperates on PUTOUT. “

proc update’file3 $

“The procedure UPDATE’FILE3 updates FILE 3 (by adding a
new record , or continuing an old one) in accordance with the
information in the newly created set of FILE 4 recs. “

item la’type integer $ “ stmt’token of the next FILE I
record”

i tem new’rec integer $ “the record number of a new FILE3
rec”

item stmt’ty pe intege r $ “ the type of the current FILE3
rec”

102

r w~~~—~- -- --- _____
~~

• --
~~~~~~

-_ _ _ _ _ _ _ _ _ _  _ _  _ _ _ _ _ _ _ _ _ _ _

4.6.3 DDG Compools

This section contains the DDO compools OPT and DEBUG. OPT
contains the user options. OPT’s var iables are described in
the JSDD USERS MANUAL . DEBUG contains debugging switches
which are described in Section 7.2.2.

start $
“ This is the options compoo l for instructions “

“ in sett ing options , see JSDD Users’ Manual. “
common opt ions  $
begin
i t em di splay ’del im b p 0 $
i tem doub le’space b p 0 $
item margin i 3 O s p 5 $
item me ss-’sw 1 36 s p I $
item page ’lngth i 36 s p 60 $
item page’width i 36 s p 132 $
item st’max i 36 s p 30 $
i t em heading b p 1 $
array header 10 h 1 0  $
begin
57h(c s draper laboratory jov ia l  s t ruc tu red  design

diagrammer )
18h(DESIGN DIAGRAM OF
end
i tem pgm’name h 150 p 21h (the design diagra mmer ) $
item low ’lim i 36 s p 20 $
item max’width 1 36 s p 40 $
i tem name’index i 36 s p I $
item head’no i 36 s p I $
i tem ta ble’of’contents b p I $
i tem t i t le’sw h p I $
array title 70 h 150 $ begin
I h (
lh ( )
I h (
41h( this listing consists of output from )
52h( the charles stark draper laboratory’s jovial j3)
34h( structured design diagrarniner.)
lh (  )
lh (

-
-

lh ( )
42h( principal designers and implementors
I h (  )
37h( gary w. goddard , csdl staff)
39h( mark h. whitworth , csdl staff )
52h( eric f. strovink , graduate student , m .i.t.)
25h (com p~iter science division

)

103 

~~~~~~~ --- ~~~~~ --~~ --~~~~~~~~-


P.— —-—

~

——- - - -— ~~ - - •~ ~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -- •-•———~~~~~••~~~~~

~7h(the charles stark draper laboratory, inc., cambridge ,
ma.)
Ih ()
end
item t i tle’no i 36 s p 17 $ end term $

start $

common debug $
begin
item debugi b p 1 $ “task progress”
item dehuq2 b p 0 $ “access i and get’fI’rec

mess ages “

item debug3 b p 0 $ “ access2 “
item debug4 b p 0 $ “access3 and transfer’write3-”
item debug~i h p 0 $ “access4 and transfer’write4”
item debuqó b p I $ “acce ss’out and

transfer’wr i te’out
item dehug7 b p 0 $ “clos e”
item debugd b p 0 $ “connect”
item dehug9 b p 0 $ “construct & output’box ’(top ~

bot tor~)’’
item dehugl0 b p 0 $ “continue and update”
itei~ debug il b p 0 $ “create ’file4’recs ”
item debugl2 b p 0 $ “create’(h & v)’ptr’rec ”
item dehugl3 b p 0 $ “display’stum p’ref”
item debug l4 b p 0 $ “draw ’lIn e”
ite liL debugib b p 0 $ “extract’n arn e”
item dehuglo b p 0 $ “extract’text”
item debugl7 b p 0 $ “output’hoader”
item debu glb b p 0 $ “group progress ”
item debtigl 9 b p 0 $ “ recor d p rogress”
item clebug20 b p 0 $ “p lace”
item debug2 l b p I $ “ (push & pop)’proc stack “

iter debug22 b p 0 $ “ resolve ’stump ”
item dehug23 h p 0 $ “ cont ents entry”
item dehu g24 b p 1 $ “aviod buf span “
item debug25 b p 0 $ “no head stmp no.”
item dehug2o b p 0 $“a ddi t ional s tum p mess ages”
item debug27 b p 0 $ “wri te bloc ks i f e rror”

end
term $

p

I U ‘t

~
- ~~~~~~~~~~~~~~~~~~~~~~

• 4.7 Invocation Diagrarnmner

4.7. 1 Introduction

The Invocation Diagrammer is a documentation tool which
computes all poss ib le p rocedure and funct ion invocat ion
trees foi a given JOVIAL program. ~i th the a id of an
Invocat ion Diagram, one can examine an unfamiliar program
and quickly determine which procedures are called from
where. The experienced reader will appreciate this
capability, since the first task in understanding any
program is to gain some understanding of control flow . A
glance at the DOG invocation Diagram will demonstrate that
th is task is often non—trivial.

It is recommen ded that the User’s Manual sect ions dealing
-w ith the Invocation Diagrammer be read and understood before
continuing, since familiar ity w ith the format of the
diagrams is important to an operational understand ing of the
diagraminer.

Section 4.7.2 describes the general structure and operation
of the d iagrammer , Section 4.7.3 lists global variables , and
Section 4.7.4 summarizes the procedures and local variables.

4.7.2 Operation and Program Structure

Operation of the diagrammer is fairly straightforward.
First , procedure FIRST’PASS is called. FIRST’PASS reads in
FILE 0 records and creates a sorted list of all procedure
and function names it finds in the file. This list is
stored in PROC’ARRAY. The main program , if there is one , is
always at PROC’ARRAY (SO$). Array elements in FLAG’ARRAY ,
declared parallel t9 -PR0~ ’ARRAY , are set = I i f the
corresponding PROC’ARRAt entry is an internal procedure.
This fact is computable from the FILE 0 format (see Section
4.4). Needless to say, FLAG’ARRAY is updated when a
PROC’ARRAY update takes place , so that corresponding entries
still match.

~Ihen FIRST’PASS completes , SECOND’PASS is invoked.
SECOfID’PASS fills a bit array (BIT’ARRAY) whose rows and
columns both correspond to names in PRUC’ARRAY. An element
of BIT’ARRAY (a,b) is set if procedure PPOC’ARRAY (a)
calls p roce dure PRO~ ’ARHAY ($ b$). The FLAG’ARRAY element
corres pond ing to PI~OC’Al-?)-~AY (b) is multiplied by 5000.

Af ter SECO~’ID’PASS , p roce dure V~AE-?SHALL is c a l l e d , w h i c h
computes the transitive closure of BIT’ARRAY . Procedure
CI -IEUK ’L~CU R S I O N pr ints the names of any p roce dures wh i ch
“call themselves ” (have a nonzero bit flag at
3IT’AP1-~AY (a ,a), where a is the index into PR0C’AI~RAY of
the p roce dure n~w:e). CHECK’RECURSION sets the FLAG’ARRAY

IL~

p
1—v

~_—~
- - -

- -

element corresponding to these procedures = 1 0000 (all
elements in 131T’ARRAY set by a closure operation are set by

~1ARSHALL to “2”, not “I” , so that these “cal l s ” w ill never
be Inter pret ed as “real” calls by future procedures).

After CHECK’RECURSION , the diagram is generated. This is
done with a recursive procedure called PRINT. PRINT pushes
an initial index into PROC’ARRAY (SO$), a corres ponding
starting column of 131T’ARRAY (IL, an initial copy of HORIZ
(wh ich contains vertical diagram lines), and calls
~RITE’PROC’NAME. ~4RITE’PROC’NAME writes out the procedure
name , preserving all vertical diagram lines to the left. If
the danger exists that an attempt might be made to write
over the DDG page’w id th value , then a numbered “stump” is

--
created. The stump character representation is appended to
PROC’ARRAY , and appropriate new elements of BIT’ARRAY are
set to effect the continuation . FLAG’ARRAY is adjusted so
that this “proce dure ” looks like a procedure that is
internal to the p rogram uni t , but never called by any other
procedure. This ensures that it will print out at the end
of the diagram .

If this new procedure nam e wh i ch has been pushed by PRI NT
ca lls another proce dure , its index and BIT’ARRAY column
index (index of the next procedure it calls) are pushed by
PRINT , and the cycle continues . Ythen PRINT pops a procedure
name (when all the procedure ’s calls have been exhausted),
the number of vert ical di agram lines to the left is reduced
by one. A pop at 0 lines means that the diagram is done.
At this po int , all p roc edures that were not called are
printed as separate Invocation Diagrams , in the same way as
the large diagram. Note that stumps will get printed at
this point.

External procedures, detected because the i r names did not
appear as the f irst recor d of any FILE 0 b lock , are fla gged
in the d iagram w i th a “+“ . Proce dures that were part of a
recurs ive loop are printed normally (pushed) just once.
Thereafter, they are printed as though they did not call any
other procedures , and are flagged on the diagram with a “*“.If this were not done, the diagram would print forever.

Page headi ngs dif fer sl ightly from the convent ion in the
DDG, because the diagraminer heading remains the same
throughout the program (except fo r page numbers) • It was
felt that cont inuat ions wou ld be rare , and isolated
procedures few ; thus , the extra code required to print a
Table of Contents and vary the heading could be left out.

I 06


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~- --,-~~,-“--~‘ ~~~~~ ~~~~~~~~~~ -~~ —~~~~~~~

4.7.3 Globa l Variables

array bi t’array 200 h 70$ “ conta ins a record of all
procedure calls from all procedures “

array column 200 integers “part of information saved when
a procedure name is pushed by print — indicates current
column of horiz.”

item cont’flag integer p 0$ -“to determine whether to print
continuation title line-”

file fileo 1 0000 r 301 v (a) v (b) v (c) v (d) v (eof) 11 $
-“fileO declaration”

table fileOb r 60 5 n$ begin item fO’entry h 30 end “used
to read in file0 record”

array f lag’array 200 integers -“parallel array to
proc’array. Contains information about corresponding proc
name in proc’array”

item gtemp 7o h 70$ ‘-‘temporary”

item horiz h 150 p lh ( )$ “contains vertical lines from
previous sect ion of d iagram”

array host’proc 200 integerS “part of print—pushed info.
Conta ins pushed proc edure name”

Item index integers “contains index of proc name found in
proc’a rray”

item line’length integer p 118$ -“same as page’width-”

i tem line’number integer p 0$ -“current line number on
output”

item max ’entry integer p OS “maximum index into
proc’array”

array next’called 200 integers -“part of print—pushed info.
Contains next proc called”

item page character p 5h(page )$ “static constant-”

a rray proc’array 200 h 30$ “contains alphabetically

sorted list of all proc names encountered “

item ptr integer p 0$ “points at active set of push array
informat ion during recursion”

107 

~~~~~ - -~~~~~~~~- — ~~~~~~~~~~~~~~ - -  ~~~~~~~~ ~~~~~~~
--

~~~~~~~~
--—-

~~~~~~~~~~- - — ~~ 

- - -~~ -- ---•~~~~~~~~~~~~ _ _

i tem rec’size integers “used to input size of fileO
• record”

array stop’flag 200 integerS “part of print—pushed info.
If set , we’re done with this proc”

item stump’number integer p 05 “to keep track of stumps”

• item tetnphh l h I S “temporary”

item temphh2 characterS “temporary ”

item temphh3 characterS “temporary ”

item tem ph3O h 30$ “temporary”

item tem pi l integers “temporary”

4.7.4 Procedures and Local Variables

proc out’line (line’contents)$

puts out one line into the output buffer

i tem line’contents character S -“line to be put out”
I tem temnp ll integers “temporary integer variable ”

proc put’out (new ’line)S

outputs a new line , adding a heading if necessary

item temnph l characters “temporary”
item temph2 characters “temporary ”
item temph3 characterS “temporary ”
item tempi l integers “temporary”
item ternpi2 integers “temporary ”
i t e m teniph ó h 6$ “use-i fo r c o n v e r t i n g numbers-”
i t e m r e m a i n d e r i n t e g e rs “t empora ry ”
i t e m page ’number i n t e g e r s “conta ins page number a f t e r
reinqu o”
item nevi ’line characterS “conta ins new line to be
output”

proc sturnp’no (=char3o)$

purpose of proc is to return a stump character string
of the form “— — —— — < > ‘ where < > i s a number from
one to 999. This string is then defined as another
procedure , externa l and not called by any internal
procs. Thus it will appear at the end of the diagram
3S a stump.

~


~~~~~~~ - - -~~~~~~~ - -,-~ --- - - -5--

item char3o h 30$ “contains stump string ° — — — —

<digits> ””
item hó h 6$ “used to convert stump number to
character form”

proc numj (aa)$ begin

used to output a number during debugging phase. No
w longer utilized , but retained for future disaster.

item aa 1 36 sS “number to be put out-”
Item bb h 6$ -“will contain character representation”

proc initializationS

proc sets up initial quantities , sets up title , clears
bit array and flag arrays.

proc flrst’pass$ begin

this procedure reads In fileO and sorts proc and
function names

item temp3O h 30$ -“temporary”
item temp il integerS “temporary”
i tem done b$ “while loop flag”

proc find (temp3O)$

returns index Into proc’array of passed name

item find integers “indicates whether temp30 has been
found in proc’array”
item tempi l Integers “temporary”
item temnp3o h 30$ “contains character stri ng to be -

found In proc’array”
item search integers “current guess”
item lower integers “lower bound on search”
item upper integers “upper hound on search”
i t em r ema in  i n t ege r s  “temporary  for  REM QUD ”

proc insert (temnp3O )$
e

object of this procedure is to Insert entries into
pro c’array

Item temp3O h 30$ “temporary ”

I u~



proc equals (search ,ternp3O)5

compare s character strings on a bit level for sorting
purposes. Returns 0 if arguments are equal (if indexed
name In pro c’array (indexed by search) Is equal to
arg ument string temp3o), I if temp30 belongs after the
index , and —I if it belongs before.

item equals integers “indicates whether temp3o is

above or below search”
item search Integers “index into proc’array-”
item temp3O h 30$ “charac te r  s t r i n g  to compare w i t h
proc’array (search)”
i t e m  t e mp i l  in tegerS  “temporar y”
item counter integers -“used to imp lement bit compare -”
item temnpi2 integerS “temporary”
i t e m  temp3 ol  h 30$ “conta ins  proc’ar ray(sea rch) -”

proc second’pass$

sets up initial bit array for creating diagram

item done b$ “while loop flag”
i t e m  t e m p i l  i n t e g e r s  “temporary ”
i t em cur ’proc in tegerS  “index in to  proc ’array  of proc
under consideration ”
item called’proc integers “Index into p roc’array of
proc that was called by cur’proc”
i t e m  temp3O h 30$ “temporary ”

proc set-’bit (aa ,bh,cc)S

utility procedure to set a bit in the bit array
database

i t em aa in tegers  “v e r t i c a l  index in to  bit ’array ”
item bb integers “horizontal index u nto bit’array”
Item cc integers “value to set bit to-”
Item temp7o h 70$ “temporary ”

proc get’hit (aa,bb)S

u t i l i t y  procedure to read a bi t  In the b i t  a r ray
• da tabase

i tem aa in tegerS  “v e r t i c a l  index in to  bi t ’a r r a y ”
ite:n bb Integers “hori zontal index into bit’array”
item temp7o h 70$ “temporary ”
i t e m  ge t’b lt  integerS “contains value of specified
bit”

1 1 u

— — - - 



-_

proc warshal l S

does a transitive closure on the bit array database

item flag b$ “whi l e  loop f l a g ”

proc check’recursionS

• checks for recurs ive  loop s by examin ing  main  diagonal
of bi t  m a t r i x .  I f  any element is set , we have a
recursive loop.

i tem flag b$ “wh i le loop f l a g”
item me ssage h 1 50$ “temporary ”

proc p r i n t s  begin

this is a recurs ive proc which pr in t s  out the
invocation diagram from the databases assembled by
first’pass and second’pass

proc write’proc’name S

this procedure does formatting of horiz and writes out
a ri ghtmost procedure name.

item aa h 150$ “temporary”
item teinpi l integers “temporary”
item host’p h 30$ “contains name of current proc (or ,
current “scope”)”

proc wr i te’horiz$

t h i s  procedure dumps hor iz  based on the cur ren t  column
value

item tempc l h 1 50$ “temporary”
item rI integers “temporary-”

proc pushs

this procedure pushes down the recursion stack of print
by examining procedures called and determining if there
are more to he dumped out beyond the current level

item terap il integers “temporary”
item done bS “w h i l e  loop f l a g”
i tem new ’proc integerS “new procedure nam e, next
c a l l e d p rocedure”

I I I  

---—~~~~~~ -------- --— - — - - -  --



U - -  - ______________ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —

4.8 Compiling the JSDD

The best method of explaining the compilation of the JOVIAL
Structured Design Diagrammer is to demonstrate the control
cards which accomplish the task. The compool segments
required for a complete compilation ares

spool — contains string package declarations
data — contains phase I global declarations
ntables — contains phasel parsing tables
utilities — contains terminal I/O declarations
opt — contains phase 2 and invocation

d iagrammer options
debug — contains phase 2 debug switches

All programs to be compiled are assumed by the control card
decks to be converted to 600S file format. This is because
MULTICS forces tabs stops to occur at 10 character intervals
when it converts a MULTICS file for use by the OCOS
Encapsulator. In order to circumvent thi:, files are
explicitly converted before compilation such that tab stops
occur at carr iage positions 4,7,10,13 , etc.

A “canned” deck is part of all the compilation decks — it is
“invok ed” by the select card s

$ select >mlsc _librarles>jocit>compule

Expanded , this is really :

S prmf 1 **,r,r, >ml>jocit>jocit.032977
$ limits I0,49k ,,20000

This arrangement of control cards always works correctly,
except when there are no compools except “utilities ”. For
some unknown reason, the deck fails in this instance. The
solution is to concatenate the “etc ” card contents to the
“jovial” card , and re—submit.

4.8.1 JSDD Compilation Contro l Cards

Phase Is

$ snumb efs
$ ident Strovink .558IcI4I2
$ jovial name/ph I 8/,xref ,map,nopt ,lstou ,
$ etc poolin/II ,I2 ,13 ,I4/,ncomdk
$ prrnfl II ,r,s,utilities.cmp . out
$ prmfl 12 ,r,s,spool.cmp_ out
$ prmfl 13 ,r,s,data.cmp_ out
$ prmfl 14,r,s,ntables.cmp_out

I I �

- - -- -~~~~~~ ~~~- - - - - ~~~~ -

- — - - _______________ - -
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

~~~~ç -~~ -

$ print p*
$ prmfl c*,w,s,jovwrk>phI8.obj
$ select >mnisc _ libraries>jocit>compile
$ select jovwrk>ph I 8.gcos —gcos
$ end job

$ snumb efs
$ Ident Strovink.558IcI412
$ jovial name/synth/, xref ,map, nopt,
$ etc poolin/11 ,12/,ncomdk
$ prmfl II ,r,s,utilities .cmp..out
$ prmfl 12 ,r,s,data.cmp_ out
$ pr i n t
$ prmfl c*,w,s,jovwrk>synth.obj
$ select >mlsc....librarIes>jocit>compile
$ select jovwrk>synth.gcos —gcos
$ endjob

Phase 2:

$ snumb efs
S ident Strovink.558IcI4l2
$ jovial name/ph24/,xref,map,nopt,
$ etc poolin/II ,I2 ,13,14/,ncomdk
$ prmfl II ,r,s,utilities .cmp_ out
$ prtnfl 12 ,r,s,spool.cmp ...out
$ prmfl I3 ,r,s,opt.cmp_out
$ prmfl 14,r,s,debug.cmp_out
$ print
S prmfl c*,w,s,jovwrk>ph24.obj
$ select >misc_libraries>jocit>complle
S select jovwrk>ph24•gcos —gcos
$ end job

Invocation Diagrammers

S snumb efs
$ ident Strovink.558IcI4I2
$ jovial name/invoc/, xref ,map,nopt,
$ etc p oolin/II ,12 ,13/,ncomdk
$ prmfl II ,r,s,utilities.cmp_out
S prmfl I2 ,r,s,spool.cmp_out
$ prmf 1 I3 ,r,s,opt.cmp_out
$ print p*
S prmf l c*,w ,s,jovwrk>Invoc.obj
S select >misc _]Ibraries>jocit>compile
S select jovwrk>invoc.gcos —gcos
$ end job

113

—

5. Error Conditions

This section describes error conditions and associated
me ssages which can occur during execution of the JOVIAL
Structured Design Diagrammer. Section 5.1 discu sses Phase I
errors, Section 5.2 covers Phase 2 errors , and Section 5.3
deals with string package errors, which are common to both
Phase I and Phase 2.

5.1 Error Conditions in Phase I

Phase I errors are best represented in a tabular format —

error message (s), cause(s), ramifications , and corrective
actions.

Error:

MODIFIED PARSE
SKI PPED OVER TOKEN “ U
RESUMI NG
< > : := < > < >
PARTIAL PARSE TO THIS POINT IS:
ILLEGAL SYMBOL PAIR:

Cause:

Phase I could not parse the Input program.

Ramifications :

If this program was correctly parsed by the JOVIAL compiler
without warnings, and does not contain JOVIAL J3X I/O
constructs, then there is an error in the 0000. The
flowchart may or may not be affected .

Corrective actions :

Make sure that the program compiles without warnings. If
this fails , contact implementors .

Errors

EOF AT I NVALID POINT
5

ABORT ON BAD EOF

Cause

Phase I has encountered an END OF FILE on the input source
deck before finding a compilable program unit.

11 4

~~~~~~~~ - - - - —~~~ - -— - - --m -~~ -—-~~~
—_~~~- _ _



if - - -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r ?T - 2~~~~~~~~:T 2~~~~~~~~— ~—~—----.~ — -- ~~~~~~~~~~~~~~~~~ 

Ramifications :

Can be the result of a parsing error, if certain crucial
tokens get skipped earlier on. Other messages should
precede these if this is the case. The flowchart will be
incorrect.

— 
- 

Corrective actions:

The input file structure should be carefully examined for
abnormalities.

Error:

MACRO TABLE OVERFLOW
SYMTAB OVERFLO W
MACRO DEFINITION TABLE OVERFLO W
FSTACK OVERFLOW

Cause:

An internal table has overflowed.

Ramifications :

Al]. but SYMTAB OVERFLOW are fatal errors. SYMTAB OVERFLOW
wi ll affect only the invocation diagram.

Corrective actions :

Recompile Phase I with larger table sizes, or:
MACRO TABLE OVERFLOW — reduce number of program macros
MAC RO DEFINITION TABLE OVERFLOW — see above
FSTACK OVERFLOW — reduce nest level of function calls
SYMTAB OVE RFLOW — reduce number of proc/function calls

Err or:

GETCRD MACRO BUFFER OVERFLOW

Cause:

A recursive macro definition has occurred , or macro nest
level has exceeded approximately 25.

Rarni fications:

Error is fatal.

Corrective actions :

Remove recursive definition , or reduce nest level.

11 5 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~ -— — -~~--- _~~~--~~~~~~~- —--- 


-5-—- - — - - - -
-

-
~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —5 — — -

Errors

I LLEGAL CHARACTER IGNORED

Cause:

An illegal character was detected in the JOV IAL source input

Rami fications:

Character is ignored ; flowchart is unaffected.

Corrective actions :

Remove character.

5.2. DOG Error Conditions and Debugging Messages

This section contains a description of errors which are
reported by the DUG and DUG debugging switches which can be
used to locate DOG malfunctions. Section 5.2.1 lists DOG
error conditions and Section 5.2.3 describe s the DEBUG
switches .

5.2.1 000 Error Conditions

The DOG reports occurrences of twelve types oi errors. All
DOG errors are fatal. •l’he following is a list of error
me ssages, their meanings and in some cases, possible
corrective actions.

PROC STACK ERROR
Part 2 processing has completed , but all entries pushed
onto the PROC’STACK have not been popped off. The
message is issued by the main routine at a time when
the PWUC’SIACK should be empty. Occurrence of this
error indicates an error in either the DDG execution or
in Fi LE I.

GROUP STORE OVERFLOII
The storage capacity of the GROUP table has been
exceeded. To overcome this problem , the DOG should be
recomp iled with a larger value for GROUP’MAX and more
entries specified in GROUP’s declaration.

BACK PTR E RRO R
A FILE 3 record w h i c h  r equ i r e s  a non—zero  I3ACK ’H or —

BACK’V field has none. An attempt to back thro T~Içh the
record (in PLACE ) has aborted. Occurrence of th is e rror
indIcates a 01)0 failure.

IlO

-i
--

~

-

~

--- - -—

~

- -

~ -



r- -~-_- - - -~- — — --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PROC OR STUMP HANDLING ERROR
An attemp t has been made to pop an element off an empty
LAYOUT’STACK. Occu rrence of this error indicates a DOG
failure .

CONTROL HEAD E RROR
The name of a control head was expected (by
EXIRACT’NAME ) but not found, Occu rrence of this error
indicates an error in either the ODO execution or In
FILE 2.

PROC HANDLING ERROR
An attempt has been made to pop an element off of an
empty PROC’STACK. Occurrence of this error indicates a
DOG failure.

LAYOUT STACK OVERFLOV~
The capacity of the LAYOUT’STACK has been exceeded. The
sizes of LAYOUT’STACK and LAYOUT’STACK’MAX should be
inc reased.

PROC STACK OVERFLOW
The capacity of PROC’STACK has been exceeded. Increase
the sizes of PROC’STALK and PROC’STACK’MAX.

STUMP HANDLING ERROR
A stump was detected during IIESOLVE’STUMP’s attempt to
find a legal stump root. This ‘rror indicates a DOG
fal lure.

STUMP HANDLING ERROR 2
A stump was found during RESOLVE’STUMP’s attempt to
find a stump root whose father’s placement could
accomodate a stump reference display. Occurrence of
this error Indi cates a DOG failure.

STUMP HANDLING ERR OR 3 REC n
Record n (FILE 3) was detected to be an illegal stump
during RESOLVE’STUMP’s invocation of PLACE. This error
indicates ~)DG failure.

SUB STUMP SEARCH FAILURE
A sub stump was detected but not found in the GROUP
table. Occurrence of this error indicates DOG failure.
(A sub stump is a previously processed stump which is
encountered again because of the backup necessary in
finding the root of the current stump ).

I I 1

-— -~--5 —-5--- 5 — - -  — --



F 
- 

5.2.2 DOG DEBUG Switches

The DDG is run with a compoo l DEBUG (see Section 4.6.3)
which contains 26 DEBUG switches wh ich control the messages
that can be used to monitor the progress of the DOG’s
execution.

Un der normal con di t ions a l l  DE BUG sw itches should be tu rne d
off (i.e. preset to zero). However , sh oul d a DDG f a i l u r e
occur , the DEBUG switches can be used to localize the DUG
fai lure.

S The destination of the DEBUG messages is controlled by the
user option MESS’SW (see JSDD USER’S MANUAL ). Messages can
be sent either to the user’s terminal or to the file whose
device numbe r is 12.

The follow ing is a list of the DEBUG switches accompanied by
a brief description of the messages that they control.

OEBUG 1 controls the em ission of messa ges th at are general
progress reports of DOG execution . The messages are:

I N I T  COM PLETE
Execut ion of the procedure INITIALIZE has been
completed.

END PART I
Part I execution has completed.

COMPU FE NUMBERS
The procedure COMPUTE’PAGE’NUMBERS has been invoked .

CONTEN TS HEADER
The page hea din g for a ta b le of contents  page has b een
output .

PART 2 DONE
Part 2 execution has completed.

LAST LINE n
The diagram will consist of n lines of output.

START BYTING
rhe output truncating procedure BYTE’EM has been
invoked.

DEBUG 2 controls  the em iss ion of messa ges concern i ng the FILE
I interface rout ines (ACCESS I and GE’f’FI’REC). Output is
voluminous . Me ssages are :

ACCE SS I in
The mth FILE 1 record is being accessed.

• - ACCESS I GEf  n
The nth block of FILE I is being read.

11 ~-

-- - 5 - 5 ----- - -



~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘
~~~ -~~~~~~~~~~~~~~~~~~ :~~~~~~~~~~~~~ -~ ----~~~~~--.—- - - —~~~~~~~

i-ILE I EUF
The en d of FILE I has been encoun te red .

OEBUG3 controls the emission of messages concerning the FILE
2 interface routine (ACCE SS2). Output is voluminous. The
me ssages are :
ACCESS2 in
The mth FILE 2 record is being accessed.

ACCESS2 GET n
The nth FILE 2 block is being read .

DEBUG4 controls the emission of messages concerned with the
FI LE 3 interface routines (ACCESS3 and TRANSFER’WRITE3).
Output is voluminous. The me ssages are :

READ3 ni
The mth record of FIlE 3 is being accessed.

TRANS—OUT n
The nth FILE 3 block is being written out to disk.

DEBUGS controls the emission of messages concerned with the
FI LE 4 interface routines (ACCESS4 and TPANSFER’r4RITE4).
Output is voluminous . The me ssages are s

REAL)4 in
The mth FILE 4 record is being accessed.

TRANSFER4—out n
The nth FILE 4 block is being wr i tten to disk. —

DEBUG6 controls the em ission of messages concerned wi th
PU1DUT’s interface routines (ACCESS’OUT and
TRANSFER’NRITE’OUT). The me ssages are :

ACCESSOUT GET in
The rnth block of PUTOUT is being read.

TRANS OUT n
The n th  PUT LJUT block is being wr i t ten to d i s k .

MAX HiurPUT p
PUTOUT now has a total of p blocks.

DEBLJG7 is not used.

DEi3UG8 controls messages emitted in the procedure
CONNECT’BOXES. Output is volumi nous. The message is:

CONNECT m TO n
boxes in and n are being connected.

OEBUG9 controls the emission of messages concerned wi th

1K~ 

— - ---- - - - - - - - - —— - -5 - - -



rI.~ 
- _ •~~~~~~~~~~~~~~ - 5-— - — - —

outputting code blocks. Output is volu~ninoiis . Inc me ssages
ares

CO NSTR UC I
The procedure CONSTRUCI”LIi4E has been invoked. The line
(of the JSDO) being constructed is also output.

TOP OUT
The procedure OU TPUI’BOX’TOP has been invoked.

BOTITOM OUT
The bottom line of the nth code block is being output.

DEBUGIO controls the emission of messages concerning FILE 3
• record creation and continuation . Output is voluminous. The

messages ares
UP END SCOPE

An END’SCOPE was encountered in FILE I.
BACK THRU in
The FILE 3 tree is being backed through in an attempt to
find the last control phrase. Record in is the current
FiLE 3 record.

UP CONTROL I
A QJNTH OL I record is being created.

UP SCOPE START
A FILE 3 recor d beginning the scope o-f a control phrase
is being created .

UP NE W TYPE
A new FILE 3 record of a different type than the last is
being created.

CONT n
The nth FILE 3 record is being continued.

DEBUGII controls the em ission of messages concerning FILE 4
record creation. Output is voluminous. The messages are:

CREA1 E4 in
The mth FILE 4 record is being created.

END CREATE n
The nth FILE 4 record was the last created in the
current set.

DEbUGI2 controls the emission of messages concerned with the
creation of sons of FILE 3 records . The messages are:
CREATE H in
The nth FILE 3 record is being created by
CREATITE’H’PTR’REC. It is accessed oy an H’PIR.

CREATE V n
• The nth FILE 3 record is being created by

CREATE’V’PTR’REC. It is accessed by a V’Pfk.

I~~u 

- - 
—-----5-- - - - -



— —
~~~~~~~~~~~

~--—~ ---— ---- --- — - ~~~~

— ---5— -~
---— --~ ——— - --

UEBUGI3 controls the emi ssion of a message concerned with
the displaying of stump references. The message is:
DISP STUMP in
The stump whose father is record in i s hav ing i t s stump
reference display output.

DEBUGI4 controls the em ission of messages output by the
procedure L)F1AN’LINE. Output is voluminous . The messages ares
START’ DRAW

ORA~4’LINE has been invoked. The coordinates of the
endpoi nts of the line to be drawn are also output.

END DR AN
The execution of DRM’LINE has been successfully
completed.

DEBUGI5 controls the emission of messages output in the
procedure EXTRACT’NAME. The message consists of:

EXTRACT NAME
EXT U AC TI ’NAM E has been invoked. Following this message,
the extracted name is output .

DEBUGIo controls the emission of messages relating to the
text extraction routine (EXTRACT’TEXT). Output is
voluminous . The message js$

EXTRACT TEXT in
EXTRACT’TEXT has been invoked and will operate on FILE
4’s mth record. The extracted text is also output.

OEBUGI7 controls the em ission of a message concerned with
outputting page headings . Output is voluminous. The message
is:

• PAGE’LTOP in
The heading for the page that starts on line in is being
output .

DEBIJGI8 controls the emission of a message reporting on the
progress of threading through the GROUP table. The message
is:

START GROUP in
Part 2 processing has begun on the FILE 3 tree pointed
to by the mth entry of GROUP.

D Eb IJOI 9 controls the em i ssion of a m e s s a g e repor t ing on the
• progress of Part 2’s code block genera t ion . Output Is

voluminous. The message is:
CU R ’REC

fhe mth code block is being output.

i~~I

— ~~~~~~~~~~~~~~~~~~~~~~~~~ — - ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ _ _

DEUUG2O controls the em ission of messages concerning Part I
code block placement. Output is volmii ~iinous. Me ssages ares

PLACE in
The procedure PLACE is operating on the nith code block.

SPAN S
The mth code block spans a paqe heading.

NO SPAN
No page heading is spanned.

DEBUG2I controls the emission of messages concerning
operations performed on the PROC’STACK. The ~ne ssa ges are :

PUSH in
The record number m is be in g pushed onto the PR UC ’SfA CK .

POP OFF in
The record number m is being porped off of the
PROC’SFACK .

DEBUG22 controls the emission of messages output by the
procedure RESOLVE’STUMP . ihe messages are:

R ESOLVI NG STUMP n
F I L E 3 record n has been found to be the roo t of the
stump.

DE F3U G23 cont ro ls the ou tpu t of e n t r i e s In the ta b le of
contents . The message is:

lABLE ENTRY
The procedure GENERATE’CUNTENTS’ENTRY has been invoked.
The name of the module whose table entry is oeing output
is also printed.

DEm3UG24 controls the emission of a message outp’it during the
buffer optimization operation performed by
OUTPU!’tJJX’iiOYlU!.. [he message is:

AV OID dJl— SPA~1 m Aj~JI) nPart ol the connectinc line between code blocks m and n
is oeing drawn now. bee Appendix .

DEbUO2~ controls the enission of :iiessaces concerned with
assigning sequential reference numbers to stu s.
Sequent ial reference numbers are ~lssi9ned only when the
Ht AV ING option is not in effect . Ihe iIess~1qe is:

SlUMP ‘~J in
The mth stum p has had i t s r e f e r e n c e numbor ~~si-:)ned.

0EbU026 controls the em i ssion of messa qes conce rned w i t ~i
stump resolution . The m~ ss~~ es are:

- - -5 -5 - - - - —- -. - -~~~~ - — - - - — - - -5 - — —-

- ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ s~~~— Th__ - - - —

STUMP CAUSE REC in
The mth FilE record caused the placement failure which
resulted in this call to RESOLVE’STUMP.

REORDER STUMP p
The FILE 3 record p has been found to be a sub stump.
I t s pos i t ion in GROUP is bein g cha nged so that i t
follows the stump which is rooted by record n.

RESOLVE:TUEE END q
FILE 3 record q is the leaf (i.e., i t po ints to no FILE
3 record) of the current stum p tree .

DEbUG27 causes FILES 3 and 4 to be written to disk if a ODD
error is detected. A messag e is output indicatinj which
versions of the files are the imiost complete.

5.3 Error Conditions in String Package

Errors

*** CONCAT ERROR ***
*** SUBSTR ERROR ***
*** SPACES ERROR ***
Cause:

The String Package has detected an error in the use of
extended string functions. It issues a warning, and
performs a cleanup action as described In Section 4.1.4.

Ramifications :

The flowchart will not be affected , as the cleanup of these
errors is well—structu red and logical.

Co rrect ive Act ions :

There is an in terna l error in the program c a l l i n g the s tr i n g
package. The most likely sources of such errors are the
DDDG SCAN rout ine and the [JOG EX1RACT’TEXT routine . Contact
impl ementor s if these errors occur frequently.

6. Operator I n s t r u c t i o n s

No special instructions need be directed to the computer
or .) e .r ator.

~

—— -- -- -~~~~~~~~~~~~~~~ -~~~~~— - -

-

~
- T - - —5- - — -—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -

Section 7 Printout

This section consists of printout . It Is printed

separately as Part II of this volume because of

Its ’ bulk .

.
5

•
~~ S_ ___

~~~~~~ ~~~~~~~~~~~~ ~~~~~~~— - - - — - - __ ___ _•__._;__ _ __ I- -

L&& ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

125 thru 344

~

—- - 5

~

- - - -5  - 5 - - - —



r • - - - -  — -- - - --— -—-r-- —- - — —s— ---—- --.~~~_~~~

I - — _ , w_.______ . . -~- -

SectIon 8 Printout

This section consists of printout . It is printed

separately as Part Illof this volume because of

its ’ bulk.

t

346 thru 592 

~~~~~~~~~~~ - -~~~~~~~~~~ — - - -~~~ - - -~~~~~ --- -s - - - - — - — - —~~~~—-  —- --5 - -


“I

Sect ion 9 Pr intout

This section consIsts of printout . It is printed

separately as Part IV of’ this volume because of’

its ’ bulk.

593 thru 647

- - — - - 5 ~~~~~~~~~~~~~~~~~~~~~~~~~~ — - --5-- --- - ~~~~~~~~~ — ——- -- - - -- - -

if-- - - - 5 - - - - -— - --5—- ———- - 5- - - - -

APP ENiJ IX A Representing Programs as binary frees

The representahility of computer programs as binary trees is
fmm ndamiient al to the operation of the JSW.

Any structured prograci written In JOVIAL can he represented
as a finite binary tree. There are ,however , non—structured
JOVIAL programs which cannot be so represented . Any JOVIAL
program (structured or not) can be represented as a finite
graph (not necessarily a tree) or as a bina ry tree (but not
necessarily a finite tree).

Consider a non—structured compound statement of the
following form s

[3 ED Iii
CODE BLOCK A
LABELI. IF COi’IDITION $

BEG I~l
COVE BLOCK B
GOTO LABEL I $

EN U
CODE r3LOCK C

A finite graph representing the compound statement is:

t OVE’j~LOtK’A $

— +
V S

*************k*** :
*IF CQt4DITIQf4 $ *—— -—— ,*CODE’LJLOCj(’b S
**** ************* *****************

V

*CIJDE ’Ij L(JCK ’C $ *
*****-k***-********

A diagrarimer employing this representation would produce
unreadable diagrams for programs having any degree of
complexity.

649

- 5 - —

The JSDD’s representation of the compound statement is:

*CL3DE ’I3LOCK’A $ *
* ** ** ** ** ** ** * * **

F

F

F

• F

***** ********************* *****************
• *LABEL I • IF CONDITION $ * *CODE’BLOCK’B $ *

*GOTO LABEL I $ *
F **************** *I

F

I

****k ************
*CQDE’BLQCK’C $ *

The JSDD diagram does not clearly illustrate the fact that
eva lua t ion of ~ONDIT1ON is repeated. The JOVIAL structured
extensions were introduced for this reason . They eliminate
the need for using non—structured constructs. [he code in
the example compound statement should be rewritten in the
forii:

CODE BLOCK A
DO VJHILE (CONDITION)

CODE BLOCK B
[END DO]
CODE BLOCK C

The JSDD representation of the rewri tten code is:

* *** * ************
*CDDE’BL(]CK’A $ *
********* ********
/ S

F

/

F

**** ********************** *****************
*DO ~HILE CONDITION $ * *CODE’BLOCK’B $ *
************************** **** ********** ***

F

F

F

F

*CODE ’LjLQCK’C $ *
*** **************

Ot~U

- - - -— -~~~~~~~~~~~~~~~ s - - - -- - -5-~~~~~~~--- - - - -- --5 — - - - -

The repeated evaluation of CONDITIO N is clearly shown in the
control box (i.e. the box containing CONDITION).

Consider a more complicated compound statement 2

BEGIN
CODE’ A
IF CUND I $

B EGIN
IF ~OND2 S

BEGIN
IF COND3 $

BEGIN
CLJDE ’b

END
CODE F C

E Ni)
END
CODE ’L)

END

The JSDL) representation of this compound statement is :

*CODE’A $ *
*“J” *
*** ********

F

F

*IF COND I $ *
* *———*IF COND2 $ * ************
*“2” * * *——— *IF COND3 $ * ***********
************ *“3” * * *—— *CODE ’b $ *
I ************ *“4” * *,‘S” *
F ************ ***********
I I

, F

F ***********
F *COfJE’C $ *
F * FFO FF *
F ***********
F

-k******
*C(JDE’j) $ *

*
-k **** **

The quoted numbers in each box indicate the order in whi ch
the tree nodes are always processed.

05 I

-
- -5 -~~~~~-~~~~~~~~~~ - - -— - -- - -5- -— - - - -s -- - -~~~~~~~~~~~

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-s~_ -___ - ~~~- -- —~~~ -~~~~~ -~~~~~~~--~~~~ .- -

The traversal of JSDL) bina ry trees is accomplished by
simulated recursion . The JSLJ() trees are regarded as
collections of subtrees related in the following manner s

****** ***********
*R OOT *———— > *R IGHT SON*
****** ***********

‘I

• **********
LEFT SON

where LEFT’SON and RIGHT’SON are r oots of the LEFT and
RI GHT subtr~es.

A recursive algorithm for the traversal might be written :

RECURSI VE PROC TRAVERSE (ROOT) $
BEGI N
VISIT (ROOT) $
TRAVERSE (RI GHT ’ SON) S
TRAVERSE (LEFT’SON) S

END

VISIT Is the procedure which operates upon each node of the
tree.

The simulation of the recursive procedure TRAVERSE Is
implemented with a stack called TRAVERSE’STACK. The
simulation is presented on the following page.

PROC TRAVERSE (ROOT) $
ITEM ROOT 1 36 S s
ITEM STACK’TOP I 3 O S P O $
ARRAY TRAVERSE’STACK 100 I 36 S $

BEGIN
“INITIAL IZE STACK”
TRAVERSE’STACK ($STACK’TOP$) = 0 $
DO ~H I LE (ROO T GO 0 1

“~1HEN ROOT IS ZERO , ALL NODES OF-”
“THE TREE HAVE BEEN VISITED”

STACK’TOP = STACK’TOP + I S
“STACK ROOT SO v~E CAN RETRI EVE IT LATER “TRAVE RSE’STACK (SSTACK’TOP$) = ROOT $
VISIT (ROOT) $
IFEITH RIGHT’SON NO 0 $

“ IT HAS A RIGHT SON.”
“TRAVERSE ITS SUBTA EE ”
ROOT = RIGHTFSON $

652

-- — .-~~~~ - -~~~~~~~ - --“-—-~~~~~~~~~- -- - - - - - — - —~~~~~~~~ - -

- —
- — -- — —----- -

~
— — — -— — .

ORIF LEFT’SON NO 0 $
“ HAVE A LEFT’SON.”
“POP ITS FATHER AND TRAVERSE THE SUBTREE “
BEG iN
ROOT = LEFT’SON $
STACK’TO P = STACK’TOP — I $

END
ORIF 1 $

“THE CURRENT ROOT IS A LEAF.”
“LOOK BACK FOR A LEFT SUBTREE TO TRAVERSE “
BEGIN

• DO ~4HILE (LEFT’SON EU 0 AND ROOT NO 0 1
ROOT = LEFT’SON $
STACK’TOP = STACK’TOP — I S

(END DO]
END
END

(END DO)
END

- - —-5 ----- -
_ Ii

~1•~~_ I __ _ _ _ _ ____
~~~~~~~~~~~~~~~~~

_ __ _ _ J



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —--—— - -5- ----- - -5-- —5 -5- -_ -

II

APPENDIX B Statement Units , Statement Tokens and Mappings

This appendix describes the reductions made by Phase I of
the JSDD which generate statement tokens and/or statement
units. The list is ordered according to the values of
STMT’TOKEN. To the right of the STMT’TOKEN, the reductions
that generate the STMT’TOKEN are listed.

STMT’TOKEN REDUCTIONS

I END’SCOPE <CLOSE DECLARATIO~ >
<PROCEDURE DECLARATION >
<THEN CLAUSE>

• <ALTERNATIVE STATEMENT>
<COMPLETh LOOP>
<I t4COMPLETE LOOP>
<STRUCTURED EXTENSION>
<CASE>
<PROGRA M TAIL>

2 COMMENT’I No reduction. This STI4T’UNIT refers to a
same—line (or Type— I) comment.

3 DELIM’COMMENT Same as Comment’I , except that it
modif ies a BLOCK DELIMETER.

4 BLOCK’BEGIN <BEGIN>
5 BLOCK’END <END>
6 END’OO <END DO>
7 END’CASE <END CASE>
8 PGM’TAIL <PROGRAM TAIL>
9 DEF’UIR <DEFINE DIRECT IVE>
10 MODE’DIR <MODE DIRECTIVE>

• 1 1 COM’HEAD <COMMON HEAD>
12 SNITCH’DEC <SNITCH DECLARATION>
13 POM’UEC <PROGRAM DECLARATION>
14 SPEC’PART <SPECIAL PART>
15 TST’STMT <TEST STATEMENT>
16 IO’STMT <ID STATEMENT>
17 DIR’STMI <DIRECT STATEMENT>
18 A SSGi4’STMT <ASS I GNE M EN T STATEMENT>
19 EXCHi40’STMT <EXCHANGE STATEMENT>
20 RETURN’STMT <RETURN STATEMENT>
2 I STOP’STMT <STOP STATEMENT>
22 PROC’CALL <PROCEDURE CALL>
23 MOD’OEC <MONITOR DECLARATI ON>
24 FILE’DEC <FILE DECLARAfI1)N> - •

2 ITEM’OEC <SIMPLE ITEM DECLA kATI :JN>
26 A RWA Y”DEC <AR R AY D E C L A R A T I o N >

O~.’ 4

- -—---5-

r1r ~
- - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- —.---———-—--—-r~~——-— ’-~~’-’~
-—‘--- - s~~~ z ~~~~~~~~~~~~~~~ -~~

_
~

STMf’iOKEN REDUCTIONS

27 ORD~~EAD <ORD HEAD>
28 ENT’L)EC <ENTRY ITEM DEE> -
29 IJEF’rIEAD <DEF HEAD>
30 DEt-’DEC <DEF ITEM DEC>
31 STRING’DEC <STRING ITEM DEC>
32 LIKE’DEC <LIKE TABLE DEC>
33 IND ’OV E R <INDEPENDENT OVERLAY DEE>
34 SUB ’OVER <SUBORDINATE OVERLAY DEE >
35 BE GIN 2 <BEGIN2 >

• 36 END2 <END2>
37 GO1O’STMT <GOTO STATEMENT>
38 COMMENT’2 No reduction. A type—2 (or

C—type) comment.
39 PGM’t-IEAD <PROGRAM HEAD>
40 CLOSE’HEAD <CLOSE HEAD >
41 PROC’DESC <PROCEDURE DESCRIPTOR>
42 IF’CLAUSE <IF CLAUSE>
43 INC’FOR <INCOMPLETE FOR>
44 FOR’ELAUSE <FOR CLAUSE>
45 DO’HEAD <DO HEAD>
46 ORIF’CLAIJSE <ORIF CLAUSE>
47 INSTANCE <INSTANCE >
48 IFE ITH’COND <IFEITH CLAUSE>
49 IFE ITH’HEAD <IFEITH>
50 CASE’I-IEAD <CASE HEAD>

Note that the reduction to <PROGRAM TAIL> causes two
STMT’TOKEN values to be emitted by Phase I of the JSDD.
These are PGM’TAIL (8) and END’SEOPE (I). They are emi tted

• in that order to allow Phase 2 to first print out the
<PROGRAM TAIL> and then end the scope of the <PROURAI4 HEAD >.

In Phase 2 of the JSDD , the va lues of STMT ’TUKEN are mapp ed
onto a set of STMT’TYPE (or STMT’UNIT) values . The mapping
is performed by the function L3IJX’MAP. The ma pping is defined
below.

I BOX’MAP (I)

I END’SCOPE
2 COMMENT’I
3 DELI M’EOMMENT I f DELIM’DISPLAY is o f f .

COMMENT’I If DELIM’DISPLAY is on.
3<1< 8 BLOCK’DELIM If DELIM’DISPLAY is off.

SEQ If DELI.M’DISPLAY is on
8 PGM’IAIL

655


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •_~~~~~~~~~~~ —

-- -.~~

8<1<38 SEQ
38 COMMENT’2
38<1 <42 CONTWOL’I
4 1<1<46 CONTROL’2
45<! <49 CONTROL’3
48<1<5 1 EONTROL’4

Of these values , only COMMENT’I , SEQ, PGM’TAIL , COMMENT’2, j
CONTROL’ I , CON L ROL’2, EON1’ROL’3, and CONTROL’4 are printing
STMT-’TYPEs. The DISPLAY’DELIM option is handled by 130X’MAP
in that the value returned by BOX’MAP determines whether a
statement unit will appear on the design diagram . 

j

See Section 4.5.3.1 for a description of the STMT’TO~(EN code
H block formats.

C— 5 (--

- -- --~~~~~~~~~ - -- - - ~~~~~~~~~- - - - -  -5--  5--  ---~~~~~~~~ - - ~~~~~~~~~ - -



-— - - 
~~

-
~~Z~

-’-- -5 -- :
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --5—-- —

APPENDIX C Optimizing the Double Buffering System

Double buffering is one of the most time consuming
operations which takes place in Phase 2 of the JSDD. Future
versions of the JSDD will eliminate much of the expense of
simulating direct access file facilities . The current JSDD
contains two optimizations of the output file double
bu ffering.

The first optimization is the elimination of invocations of
the procedure DRAM’LINE (see Section4.5.3.2) where the line
to be drawn spans a block boundary. This optimization is
performed in the procedure OUTPU1’BOX’BOTTOM (see Section
4.5.3). After the bottom line of a code block is output to
PUTOIJT (the output file), its V’PTR is examined. If V’PTR is
greater than zero , th en the cur ren t code block w i ll have
another code block appearing beneath it (i.e., its son). If
the top line of the son appears in another block of PUTOUT
recor ds, then a connect ing l ine is d rawn fro m the bottom of
the cur r ent code block to the last recor d in the block
cu r ren t l y in core. The STOP’LINE field of the current code
block’s FILE 3 record is then reset to the record number of
the last record in core. This operation permits the
conn ect ing l ine bet w een the cur ren t code b loc k an d its son
to be drawn in two sections —— neither of which spans the
block boundary.

[he second optimization of the double buffering system
involves an extra pass through the output file (in the
procedure BYTE’EM). BYTE’EM loops through PUTOUT’s recor ds
an d ca l l s the BYTE f u n c t i o n wh ich t runc ates the r ecor ds at
PA(iE’~ IDTH characters. It is more efficient to defer the
truncat ion of PUTOUT’s records un t i l th ei r genera t ion is
completed because it requires only one truncation per
record . If truncation was performed during PU1tJUTF 5
genera t ion , m u l t ip le t runca t ions of each recor d woul d be
necessary.

Future vers ions of the JSDL) will include optimizations that
w ill completely elim inate the need to double buffer PUTOUT.
These opt imizations will implement a queue which will store
the progress of a diagram branch’s output processing . When a
branch reaches a PUTOUT block boundary its process ing w i ll
be suspended and all other branches which use the PUTOUT
block currently in core will be processed until the end of
the buffer is reached. ~-1hen all of the diagram branches have
been p rocess ed in th i s manner , the buffer will be
permanently written to disk , and the suspended branches will
resume processing in the next block of PIJTOUT.

6~~
-1

-5—-
5 — — - - -

-

- - — —-- - -

~~~

MISS JON 
-

of
Rome Air Development Center

RAX plans and conducts research, exploratory and advanced
developaent programs in comaand, control , and coririunications
(C3) activities, and in the C3 areas of inf ormation sciences
and intelligence. The principal technical mission areas
are coimnunlcations, electromagnetic guidance and control,
surveillance of gro~?2d and aerospace objects, Intelligence
dsta collection and handling, information system technology,
lonosphezic pvp agation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

~~

%JY2Jj
‘
~‘~ ~~~


